Welcome...

dr. D. Gallistl (Dietmar)

Assistant Professor

About Me

Research interests
  • Numerical methods for PDEs
  • Multiscale methods and numerical homogenization
  • Computational mechanics
  • Adaptive algorithms
  • Mixed FEM and exterior calculus techniques

Research

Preprints

  • D. Gallistl and E. Süli. Mixed finite element approximation of the Hamilton-Jacobi-Bellman equation with Cordes coefficients. (June 2018) Preprint
  • D. Gallistl and D. Peterseim. Numerical stochastic homogenization by quasilocal effective diffusion tensors. ArXiv e-prints 1702.08858 (2017) Preprint
  • C. Carstensen, D. Gallistl and J. Gedicke. Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM. arXiv e-prints 1705.08851 (2017) Preprint
  • D. Brown and D. Gallistl. Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wavenumber explicit bounds. ArXiv e-prints 1608.04243 (2016) Preprint

Articles in journals

  1. D. Gallistl, P. Henning and B. Verfürth. Numerical homogenization of H(curl)-problems. SIAM J. Numer. Anal., vol. 56, no. 3, pp. 1570—1596 (2018) Preprint, doi
  2. D. Gallistl. Numerical approximation of planar oblique derivative problems in nondivergence form. Math. Comp. (2018) Published online Preprint, doi
  3. D. Gallistl. Rayleigh-Ritz approximation of the inf-sup constant for the divergence. Math. Comp. (2018) Published online Preprint, doi
  4. D. Boffi, D. Gallistl, F. Gardini and L. Gastaldi. Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form. Math. Comp., vol. 86, no. 307, pp. 2213—2237 (2017) Preprint, doi
  5. D. Gallistl. Stable splitting of polyharmonic operators by generalized Stokes systems. Math. Comp., vol. 86, no. 308, pp. 2555—2577 (2017) Preprint, doi
  6. D. Gallistl. Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients. SIAM J. Numer. Anal., vol. 55, no. 2, pp. 737—757 (2017) pdf, doi
  7. D. Gallistl and D. Peterseim. Computation of quasilocal effective diffusion tensors and connections to the mathematical theory of homogenization. Multiscale Model. Simul., vol. 15, no. 4, pp. 1530–1552 (2017) pdf, doi
  8. D. Gallistl, P. Huber and D. Peterseim. On the stability of the Rayleigh-Ritz method for eigenvalues. Numer. Math., vol. 137, no. 2, pp. 339—351 (2017) Preprint, doi
  9. C. Carstensen, D. Gallistl and J. Gedicke. Justification of the saturation assumption. Numer. Math., vol. 134, no. 1, pp. 1—25 (2016) doi
  10. C. Carstensen, D. Gallistl and M. Schedensack. $L^2$ best-approximation of the elastic stress in the Arnold-Winther FEM. IMA J. Numer. Anal., vol. 36, no. 3, pp. 1096—1119 (2016) pdf, doi
  11. C. Carstensen, D. Gallistl and Y. Huang. Saturation and reliable hierarchical a posteriori Morley finite element error control. J. Comput. Math. (2016+) Accepted for publication
  12. C. Carstensen, D. Gallistl and M. Schedensack. Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems. Math. Comp., vol. 84, no. 293, pp. 1061—1087 (2015) doi
  13. C. Carstensen, D. Gallistl and N. Nataraj. Comparison results of nonstandard $P_2$ finite element methods for the biharmonic problem. ESAIM Math. Model. Numer. Anal., vol. 49, pp. 977—990 (2015) doi
  14. D. Gallistl. An optimal adaptive FEM for eigenvalue clusters. Numer. Math., vol. 130, no. 3, pp. 467—496 (2015) Preprint, doi
  15. D. Gallistl. Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal., vol. 35, no. 4, pp. 1779—1811 (2015) pdf doi
  16. D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng., vol. 295, pp. 1—17 (2015) Preprint, doi
  17. C. Carstensen and D. Gallistl. Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math., vol. 126, no. 1, pp. 33—51 (2014) doi
  18. C. Carstensen, D. Gallistl, F. Hellwig and L. Weggler. Low-order dPG-FEM for an elliptic PDE. Comput. Math. Appl., vol. 68, no. 11, pp. 1503—1512 (2014) doi
  19. C. Carstensen, D. Gallistl and J. Hu. A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl., vol. 68, no. 12, pp. 2167—2181 (2014) doi
  20. D. Gallistl. Adaptive nonconforming finite element approximation of eigenvalue clusters. Comput. Methods Appl. Math., vol. 14, no. 4, pp. 509—535 (2014) pdf, doi
  21. D. Gallistl, M. Schedensack and R. P. Stevenson. A remark on newest vertex bisection in any space dimension. Comput. Methods Appl. Math., vol. 14, no. 3, pp. 317—320 (2014) pdf, doi
  22. C. Carstensen, D. Gallistl and J. Hu. A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles. Numer. Math., vol. 124, no. 2, pp. 309—335 (2013) doi
  23. C. Carstensen, D. Gallistl and M. Schedensack. Discrete reliability for Crouzeix—Raviart FEMs. SIAM J. Numer. Anal., vol. 51, no. 5, pp. 2935—2955 (2013) pdf, doi
  24. C. Carstensen, D. Gallistl and M. Schedensack. Quasi-optimal adaptive pseudostress approximation of the Stokes equations. SIAM J. Numer. Anal., vol. 51, no. 3, pp. 1715—1734 (2013) doi

Articles in collections

  • D. Brown, D. Gallistl and D. Peterseim
    Multiscale Petrov-Galerkin Method for High-Frequency Heterogeneous Helmholtz Equations, pp. 85—115 in Meshfree Methods for Partial Differential Equations VII , edited by M. Griebel and M. A. Schweitzer , Lect. Notes Comput. Sci. Eng. (2017) Preprint, doi
  • C. Carstensen, D. Gallistl and B. Krämer. Numerical algorithms for the simulation of finite plasticity with microstructures, pp. 1—30 in Analysis and computation of microstructure in finite plasticity , edited by S. Conti and K. Hackl , Lecture Notes in Applied and Computational Mechanics , Springer (2015) doi

Proceedings

  • D. Gallistl. Computation of the inf-sup constant for the divergence. PAMM Proc. Appl. Math. Mech. (June 2018), submitted
  • D. Gallistl. An adaptive FEM for linear elliptic equations in nondivergence form with Cordes coefficients. Oberwolfach Reports, vol. 13, no. 3, pp. 2448—2449 (2016) doi
  • D. Gallistl. On the discrete reliability for nonconforming finite element methods. Oberwolfach Reports, vol. 13, no. 3, pp. 2550—2551 (2016) doi
  • D. Gallistl, D. Peterseim and C. Carstensen. Multiscale Petrov-Galerkin FEM for acoustic scattering. PAMM Proc. Appl. Math. Mech., vol. 16, no. 1 pp. 745-746 (2016) doi
  • P. Bringmann, C. Carstensen, D. Gallistl, F. Hellwig, D. Peterseim, S. Puttkammer, H. Rabus and J. Storn. Towards adaptive discontinuous Petrov-Galerkin methods. PAMM Proc. Appl. Math. Mech. , vol. 16, no. 1 pp. 741—744 (2016) doi
  • D. Gallistl. Multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Oberwolfach Reports, vol. 12, no. 3, pp. 2580—2581 (2015) doi
  • D. Gallistl. An optimal adaptive FEM for eigenvalue clusters. Oberwolfach Reports, vol. 10, no. 4, pp. 3267—3270 (2013)  doi
  • D. Gallistl. Quasi optimal adaptive pseudostress approximation of the Stokes equations. Oberwolfach Reports, vol. 9, no. 1, pp. 497—499 (2012) doi

Articles in collections

  • D. Gallistl. Mixed finite element approximation of elliptic equations involving high-order derivatives. Habilitation thesis, Karlsruher Institut für Technologie, Fakultät für Mathematik (2018) resource
  • D. Gallistl. Adaptive finite element computation of eigenvalues. Doctoral dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2014) resource

Other publications

  • D. Gallistl. The adaptive finite element method. Snapshots of modern mathematics from Oberwolfach, vol. 13 (2016) Preprint, doi

UT Research Information System

Education

Teaching at the University of Heidelberg Winter 2017/18 Teaching at KIT Summer 2017 Teaching at the University of Bonn Summer 2016 Winter 2015/16

Projects

Mehrskalenmethoden für Wellenausbreitung in heterogenen Materialien und Metamaterialien Eliteprogramm für Postdocs der Baden-Württemberg Stiftung

Contact Details

Visiting Address

University of Twente
Faculty of Electrical Engineering, Mathematics & Computer Science
Zilverling (building no. 11)
Hallenweg 19
7522NH  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Electrical Engineering, Mathematics & Computer Science
Zilverling
P.O. Box 217
7500 AE Enschede
The Netherlands