Expertise
Engineering & Materials Science
# Automatic Indexing
# Classifiers
# Data Mining
# Digital Libraries
# Machine Learning
# Radiology
# Semantics
# Visualization
Organisations
Publications
Recent
Nauta, M., Trienes, J.
, Pathak, S., Nguyen, E., Peters, M., Schmitt, Y., Schlötterer, J.
, van Keulen, M.
, & Seifert, C. (2022).
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI. ArXiv.org.
https://doi.org/10.48550/arXiv.2201.08164
Lu, C.
, Pathak, S.
, Englebienne, G.
, & Seifert, C. (2022).
Channel Contribution In Deep Learning Based Automatic Sleep Scoring – How Many Channels Do We Need?
IEEE transactions on neural systems and rehabilitation engineering,
31, 494-505.
https://doi.org/10.1109/TNSRE.2022.3227040
Paalvast, O.
, Nauta, M., Koelle, M., Geerdink, J., Vijlbrief, O., Hegeman, J. H.
, & Seifert, C. (2022).
Radiology report generation for proximal femur fractures using deep classification and language generation models.
Artificial intelligence in medicine,
128, [102281].
https://doi.org/10.1016/j.artmed.2022.102281
Nauta, M., Jutte, A., Provoost, J.
, & Seifert, C. (2022).
This Looks Like That, Because.. Explaining Prototypes for Interpretable Image Recognition. In M. Kamp, M. Kamp, I. Koprinska, A. Bibal, T. Bouadi, B. Frénay, L. Galárraga, J. Oramas, L. Adilova, Y. Krishnamurthy, B. Kang, C. Largeron, J. Lijffijt, T. Viard, P. Welke, M. Ruocco, E. Aune, C. Gallicchio, G. Schiele, F. Pernkopf, M. Blott, H. Fröning, G. Schindler, R. Guidotti, A. Monreale, S. Rinzivillo, P. Biecek, E. Ntoutsi, M. Pechenizkiy, B. Rosenhahn, C. Buckley, D. Cialfi, P. Lanillos, M. Ramstead, T. Verbelen, P. M. Ferreira, G. Andresini, D. Malerba, I. Medeiros, P. Fournier-Viger, M. S. Nawaz, S. Ventura, M. Sun, M. Zhou, V. Bitetta, I. Bordino, A. Ferretti, F. Gullo, G. Ponti, L. Severini, R. Ribeiro, J. Gama, R. Gavaldà, L. Cooper, N. Ghazaleh, J. Richiardi, D. Roqueiro, D. Saldana Miranda, K. Sechidis, ... G. Graça (Eds.),
Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2021, Proceedings (Vol. 1524, pp. 441-456). (Communications in Computer and Information Science; Vol. 1524 CCIS). Springer Science + Business Media.
https://doi.org/10.1007/978-3-030-93736-2_34
Nauta, M., Walsh, R., Dubowski, A.
, & Seifert, C. (2022).
Uncovering and Correcting Shortcut Learning in Machine Learning Models for Skin Cancer Diagnosis.
Diagnostics,
12(1), [40].
https://doi.org/10.3390/diagnostics12010040
Liu, D., Zhu, T., Schlötterer, J.
, Seifert, C.
, & Wang, S. (2021).
Rewriting Fictional Texts Using Pivot Paraphrase Generation and Character Modification. In K. Ekštein, F. Pártl, & M. Konopík (Eds.),
Text, Speech, and Dialogue: 24th International Conference, TSD 2021, Olomouc, Czech Republic, September 6-9, 2021 Proceedings (pp. 73-85). (Lecture Notes in Computer Science; Vol. 12848). Springer.
https://doi.org/10.1007/978-3-030-83527-9_6
Nauta, M., van Bree, R.
, & Seifert, C. (2021).
Intrinsically Interpretable Image Recognition with Neural Prototype Trees. Abstract from Beyond Fairness: Towards a Just, Equitable, and Accountable Computer Vision, Online Event.
Nauta, M., van Bree, R.
, & Seifert, C. (2021).
Neural Prototype Trees for Interpretable Fine-Grained Image Recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 14933-14943). IEEE.
https://doi.org/10.1109/CVPR46437.2021.01469
Libbi, C. A., Trienes, J., Trieschnigg, D.
, & Seifert, C. (2021).
Generating Synthetic Training Data for Supervised De-Identification of Electronic Health Records.
Future Internet,
13(5), [136].
https://doi.org/10.3390/fi13050136
Pathak, S.
, Lu, C., Belur Nagaraj, S.
, van Putten, M. J. A. M.
, & Seifert, C. (2021).
STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring.
Artificial intelligence in medicine,
114, [102038].
https://doi.org/10.1016/j.artmed.2021.102038
UT Research Information System
Google Scholar Link
Courses Academic Year 2022/2023
Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.
Courses Academic Year 2021/2022
Contact Details
Visiting Address
University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
(building no. 11)
Hallenweg 19
7522NH Enschede
The Netherlands
Mailing Address
University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
P.O. Box 217
7500 AE Enschede
The Netherlands