Energy Engineer with a multidisciplinary background and experience in Materials Science on the synthesis and characterization of oxides. Graduated with a Bachelor of Science and Technology and Energy Engineer by the Universidade Federal do ABC (UFABC, Brazil). PhD in Materials Science on Solid-State Lithium Batteries at the University of Twente (UT, Netherlands). Currently, a Researcher in the Inorganic Materials Science group (UT, Netherlands), carrying out studies in the fields of Solid-state batteries (SSB), Pulsed Laser Deposition (PLD), and advanced techniques in Scanning Probe Microscopy (SPM).


  • Chemistry

    • Lithium
    • Nanocomposite
    • Liquid Film
    • Cathode
  • Material Science

    • Nanocomposites
    • Thin Films
    • Anode
    • Oxide



A High-Entropy Oxide as High-Activity Electrocatalyst for Water OxidationACS nano, 17(6), 5329-5339. Kante, M. V., Weber, M. L., Ni, S., van den Bosch, I. C. G., van der Minne, E., Heymann, L., Falling, L. J., Gauquelin, N., Tsvetanova, M., Cunha, D. M., Koster, G., Gunkel, F., Nemšák, S., Hahn, H., Velasco Estrada, L. & Baeumer, C.
Self-Assembled Epitaxial Cathode-Electrolyte Nanocomposites for 3D MicrobatteriesACS Applied Materials and Interfaces, 14(37), 42208-42214. Cunha, D. M., Gauquelin, N., Xia, R., Verbeeck, J. & Huijben, M. electrocatalyst La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 for water oxidation. Ni, S., Kante, M. V., M. Cunha, D., Weber, M. L., van den Bosch, I. C. G., Heymann, L., van der Minne, E., Falling, L., Koster, G., Gunkel, F., Nemsak, S., Hahn, H., Velasco, M. & Baeumer, C.Nickel Niobate Anodes for High Rate Lithium-Ion BatteriesAdvanced energy materials, 12(1), Article 2102972. Xia, R., Zhao, K., Kuo, L. Y., Zhang, L., Cunha, D. M., Wang, Y., Huang, S., Zheng, J., Boukamp, B., Kaghazchi, P., Sun, C., ten Elshof, J. E. & Huijben, M.
Strain-Engineered Metal-to-Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on SiliconAdvanced materials, 32(50), Article 2004995. Chen, B., Gauquelin, N., Jannis, D., Cunha, D. M., Halisdemir, U., Piamonteze, C., Lee, J. H., Belhadi, J., Eltes, F., Abel, S., Jovanovic, Z., Spreitzer, M., Fompeyrine, J., Verbeeck, J., Bibes, M., Huijben, M., Rijnders, G. & Koster, G.

Research profiles

Lithium-ion batteries are the primary power source for many applications, but none of the current devices can fully satisfy all the projected energy storage needs. Common rechargeable batteries are based on liquid electrolytes, which limit their design and safety. Therefore, the need for all-solid-state micro-batteries arises, showing enhanced safety, volumetric energy/power density and chemical stability. Planar 2D solid-state thin-film batteries exhibit undesirable energy vs power balance, which can be improved by applying 3D geometries, increasing the internal surface area.

Vertically aligned nanocomposite (VAN) thin films have been developed as a new materials’ platform for creating self-assembled device architectures and multi functionalities. They show a wide range of attributes arising from the strong interplay among the materials’ properties. Epitaxial VANs are self-assembled through pulsed laser deposition (PLD), without control of the deposition sequence, required for planar multilayer films. Although various epitaxial VANs have been studied in the last decade, lithium-based VANs have yet to be fully explored. 

Even though lithium-based self-assembled VANs have been demonstrated1, further aspects of these complex structures need to be investigated. 

1. Cunha, D. M., Vos, C. M., Hendriks, R., Singh, D. P., Huijben, M., Morphology Evolution during Lithium-Based Vertically Aligned Nanocomposite Growth. ACS Materials and Interfaces, 11 (47), 44444-44450 (2019).

Current projects

Kinetic Monte-Carlo simulations of VAN growth

To predict the formation of VAN structures and analyse the influence of temperature and deposition rate on the morphology evolution of these nanocomposites, a KMCS model is employed. The model allows the study of complex systems and the compatibility of different materials, using activation energies obtained experimentally and with minimum restrictions for hopping directions.

Controlled fabrication of lithium-based nanocomposites through self-assembly

The self-assembly procedure was recently applied for the first time with lithium-containing materials to create electrode/electrolyte nanocomposites deposited on crystalline substrates by PLD. A further study has to be carried out to understand the control over the crystallographic properties of VAN thin films and how different growth conditions would influence the crystal structure, morphology, composition, and performance of the nanopillars and matrix.

Nanoscale mapping of local electrochemical behaviour in nanocomposites

Advanced Scanning Probe Microscopy (SPM) techniques allow the measurement of electrochemistry on the nanoscale, which can be used to elucidate structure/function relationships in battery materials with exceptional resolution. To achieve insight into the non-uniform distribution of lithium activity at the device level, various SPM techniques can be applied, e.g. FORC-IV. These multidimensional SPM methods can explain the conduction mechanisms that rule the electrochemistry in the nanoscale.

In the press

Invited piece for 4UT.Federation's Innovative Materials magazine:
'Self-assembled Vertically Aligned Nanocomposites for Solid-State Batteries'
Innovative Materials, Volume 2, 2021, p. 36-37

Mesa+ News June 2021:
‘It’s a big step, using composite pillars in 3D solid-state batteries’ (


Visiting address

University of Twente

Carré (building no. 15), room C3223
Hallenweg 23
7522 NH Enschede

Navigate to location


Scan the QR code or
Download vCard