D. Monteiro Cunha (Daniel)

PhD Candidate

About Me

Bachelor in Science and Technology and Engineer of Energy by the Universidade Federal do ABC (UFABC). Currently works as a PhD student in the Inorganic Materials Science group (IMS) at the University of Twente (UT). Has experience with the synthesis and characterization of nanomaterials for Energy applications.

Download CV (PDF)


Nanoscale Mapping of Local Electrochemical Behavior in Nanocomposities

PhD Student: Daniel Monteiro Cunha

Supervisor: Mark Huijben

The aim of this project is to provide insight into the elementary mechanisms of solid-state electrochemical processes within the oxide electrode/electrolyte nanocomposites at the nanoscale.

Lithium-ion batteries are the most popular rechargeable batteries nowadays. However, most commercial rechargeable Li-ion batteries deliver energy densities of only 10-15% of their theoretical values1,2 and start to fade (irreversible capacity loss) after only hundreds of operational cycles3. Limitations include slow electrode process kinetics, low ionic diffusion and low electronic conductivity, especially at the electrode-electrolyte interfaces. Gaining control over these interfaces is a grand challenge, being more important than designing new materials4.

The Electrochemical Strain Microscopy (ESM) technique will provide information about the lithium diffusion mechanism in 3D self-assembled solid-state battery structures. With high-resolution mapping the possible concentration of lithium ion flow along grain boundaries, which could lead to cracking and battery failure, will be studied.

In this project, detailed understanding of the interfacial reactions in the nanocomposites will provide insight into the causes of the loss of capacity on subsequent battery charging/discharging or battery fading, leading to knowledge-driven design and optimization of 3D solid-state lithium batteries.

1 F. Cheng, J. Liang, Z. Tao, and J. Chen, Adv. Mater. 23, 1695-1715 ( 2011), DOI: 10.1002/adma.201003587

2 J.F.M. Oudenhoven, R.J. Vullers, and R. van Schaijk, Int. J. Energy Res. 36, 1139 (2012), DOI: 10.1002/er.2949

3 M. Armand, J.M. Tarascon, Nature 451, 652 (2008), DOI:10.1038/451652a

4 J.-M. Tarascon, and M. Armand, Nature 414, 359 (2001), DOI: 10.1038/35104644

UT Research Information System

Google Scholar Link

Contact Details

Visiting Address

University of Twente
Faculty of Science and Technology
Carré (building no. 15), room C3225
Hallenweg 23
7522NH  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Science and Technology
Carré  C3225
P.O. Box 217
7500 AE Enschede
The Netherlands

Social Media