TNW-BET-AOT

Dirk Grijpma's research interests are: resorbable polymers and composites for medical applications, structure-properties relationships in polymers, tissue engineering, drug delivery, ring-opening polymerization, photo-polymerization, combinatorial chemistry, hybrid networks, 3D printing and stereolithography.

Current research includes the development of advanced microstructures by additive manufacturing (3D printing and stereolithography), the synthesis of novel polymeric materials for use in these additive manufacturing technologies and research programs on composite membranes for the treatment of pelvic organ prolapse.

His research is characterized by a very high applicability of the developed polymeric biomaterials and implants in the clinic. Much of this work is done in cooperation with clinicians, and in collaboration with industry. Valorization occurs by actively patenting relevant research findings and investigating possibilities for the creation of spin-off companies.

Expertise

  • Medicine and Dentistry

    • Carbonic Acid
    • Cyclopropane
  • Material Science

    • Stereolithography
    • Composite Material
    • Mechanical Property
    • Three Dimensional Printing
    • Material
    • Surface

Organisations

Ancillary activities

  • Ardent VentureDGA
  • PUMVoluntary expert advice

Publications

2024
2023
Physicochemical Characterization and Immunomodulatory Activity of Polyelectrolyte Multilayer Coatings Incorporating an Exopolysaccharide from Bifidobacterium longum, 5589-5604. Bagnol, R., Siverino, C., Barnier, V., O’Mahony, L., Grijpma, D. W., Eglin, D. & Moriarty, T. F.https://doi.org/10.1021/acs.biomac.3c00516In Vitro and In Vivo Degradation of Photo‐Crosslinked Poly(Trimethylene Carbonate‐co‐ε‐Caprolactone) Networks (E-pub ahead of print/First online). van Bochove, B., Rongen, J. J., Hannink, G., Seppälä, J. V., Poot, A. A. & Grijpma, D. W.https://doi.org/10.1002/mabi.202300364Alginate chitosan microbeads and thermos-responsive hyaluronic acid hydrogel for phage delivery, Article 103991. Rotman, S. G., Post, V., Foster, A. L., Lavigne, R., Wagemans, J., Trampuz, A., Moreno, M. G., Metsemakers, W. J., Grijpma, D. W., Richards, R. G., Eglin, D. & Moriarty, T. F.https://doi.org/10.1016/j.jddst.2022.103991Optimizing the Formation of Hybrid Networks Based on Poly(trimethylene carbonate) and Collagen. Macarez, A.-C., van Bochove, B., Ankoné, M. J. K., Poot, A. A. & Grijpma, D. W.Porous Hybrid Networks based on Poly(trimethylene carbonate) and Collagen. van Bochove, B., Kristen, M., Ankoné, M. J. K., Bayon, Y., Grijpma, D. W. & Poot, A. A.Enzymatic post-crosslinking of printed hydrogels of methacrylated gelatin and tyramine-conjugated 8-arm poly(ethylene glycol) to prepare interpenetrating 3D network structures. Liang, J., Wang, Z., Poot, A. A., Grijpma, D. W., Dijkstra, P. J. & Wang, R.https://doi.org/10.18063/ijb.750
2022
Hybrid Networks of Hyaluronic Acid and Poly(trimethylene carbonate) for Tissue Regeneration, 4366–4374. Gielen, A. M. C., Ankone, M., Grijpma, D. W. & Poot, A. A.https://doi.org/10.1021/acs.biomac.2c00861Real-Time 1H and 31P NMR spectroscopy of the copolymerization of cyclic phosphoesters and trimethylene carbonate reveals transesterification from gradient to random copolymers, Article 111607. Rheinberger, T., Ankone, M., Grijpma, D. & Wurm, F. R.https://doi.org/10.1016/j.eurpolymj.2022.111607Biocompatibility and degradation comparisons of four biodegradable copolymeric osteosynthesis systems used in maxillofacial surgery: A goat model with four years follow-up, 439-456. Gareb, B., van Bakelen, N. B., Driessen, L., Buma, P., Kuipers, J., Grijpma, D. W., Vissink, A., Bos, R. R. M. & van Minnen, B.https://doi.org/10.1016/j.bioactmat.2022.01.015Structure–property relations in semi-crystalline combinatorial poly(urethane-isocyanurate)-type hydrogels, 1055-1061. Driest, P. J., Dijkstra, D. J., Stamatialis, D. & Grijpma, D. W.https://doi.org/10.1002/pi.6427The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration, Article 119550. Bagnol, R., Grijpma, D., Eglin, D. & Moriarty, T. F.https://doi.org/10.1016/j.carbpol.2022.119550Hybrid Hydrogels Based on Methacrylate-Functionalized Gelatin (GelMA) and Synthetic Polymers. Liang, J., Dijkstra, P. J., Poot, A. A. & Grijpma, D. W.https://doi.org/10.1007/s44174-022-00023-2In vitro and in vivo degradation of photo-crosslinked poly(trimethylene carbonate-co-ɛ-caprolactone) networks. van Bochove, B., Rongen, J. J., Hannink, G. J., Buma, P., Poot, A. A. & Grijpma, D. W.
2021
Poly(trimethylene carbonate)-based membranes for biomimetic lung epithelial-endothelial models. University of Twente. Pasman, T.https://doi.org/10.3990/1.9789036552288Hybrid hydrogels based on gelatin methacrylate. University of Twente. Liang, J.https://doi.org/10.3990/1.9789036552004Designing advanced functional polymers for medicine, Article 110573. van Bochove, B., Grijpma, D. W., Lendlein, A. & Seppälä, J. V.https://doi.org/10.1016/j.eurpolymj.2021.110573Tough fibrous mats prepared by electrospinning mixtures of methacrylated poly(trimethylene carbonate) and methacrylated gelatin, Article 110471. Liang, J., Chen, H., Guo, Z., Dijkstra, P., Grijpma, D. & Poot, A.https://doi.org/10.1016/j.eurpolymj.2021.110471Advanced polymer-based composites and structures for biomedical applications, Article 110388. Guo, Z., Poot, A. A. & Grijpma, D. W.https://doi.org/10.1016/j.eurpolymj.2021.110388Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites, Article 110335. Geven, M. A., Lapomarda, A., Guillaume, O., Sprecher, C. M., Eglin, D., Vozzi, G. & Grijpma, D. W.https://doi.org/10.1016/j.eurpolymj.2021.110335Mechanical properties of porous photo-crosslinked poly(trimethylene carbonate) network films, Article 110223. van Bochove, B. & Grijpma, D. W.https://doi.org/10.1016/j.eurpolymj.2020.110223Triply Periodic Minimal Surfaces (TPMS) for the Generation of Porous Architectures Using StereolithographyIn Computer-Aided Tissue Engineering (pp. 19-30). Humana Press. Blanquer, S. B. G. & Grijpma, D. W.https://doi.org/10.1007/978-1-0716-0611-7_2
2020

Research profiles

Courses academic year 2023/2024

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.

Courses academic year 2022/2023

Address

University of Twente

Horst Complex (building no. 20), room ZH235
De Horst 2
7522 LW Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard