I studied Technical medicine between 2006 and 2013 at the University of Twente. My graduation project focused on the interaction between stents and blood flow in case of stenotic vascular pathologies. This topic has interested me ever since and I obtained my PhD on this topic within the Physics of Fluids group (University of Twente) in 2017, under the supervision of prof. dr. Michel Reijnen and prof. dr. Michel Versluis1. My PhD work incorporated both in vitro and in vivo flow visualization, for which I spent time in the Labs of PoF and at the department of Vascular Surgery, Rijnstate Hospital Arnhem. My PhD was setup as a six year project with a 50/50 balance between research and education, I’m involved in several courses within the Technical Medicine program.

During my Postdoc period I expanded my PhD work into a new research line, within the multi-modality medical imaging (M3i) group. In 2019 I was appointed as an Assistant Professor at the M3i group. In this role I’m continuing my work on investigating the interaction of blood flow and stents in relation to the durability of stents to maximize the outcome for patients. My work has a clear translational and applied focus, therefore I have an active secondment at the department of vascular surgery at the Rijnstate hospital.

To visualize and quantify blood flow I apply (and develop) several tools. In vitro we make use of laser particle image velocimetry techniques, realistic flow phantoms and flow circuits to simulate parts of human circulatory system2. In vivo we focus on the application of high frame-rate contrast enhanced ultrasound techniques3. Based on these techniques there are several project in which I’m involved:

  • Stichting Lijf en Leven project, focusing on the relation between blood flow and disease progression in case of aortoiliac peripheral arterial disease. Funded by the stichting Lijf en Leven.
  • ADEAR project, focusing on quantifying the in vivo deformation of endografts and in vitro interaction with blood flow at the timescale of a single heartbeat or breath cycle. Funded by the Connecting Industries Call and Terumo Aortic
  • 2ACP project, focusing on optimizing the visualization of polymers used for injection in case of active sac filling. The second goal of the project is to investigate the mechanical interaction between the stent graft and polymer. Funded by the TKI-LSH PPP call from Health Holland and TripleMed Bv.
  • Ultra-x-treme project, focusing on the development and application of 3D ultrasound based blood flow quantification aligned with biomechanical models for patient-specific characterization of cardiovascular status. Funded by NWO through the Perspectief program and several companies
  • Vortecs project, focusing at obtaining 2D in vivo blood flow quantification, both with and without the use of contrast agents. Funded by NWO through the OTP program, next to Philips and Medtronic.

1. Groot Jebbink, E. (2017). Aortoiliac stenting, how blood flow and stents interact. University of Twente. https://ris.utwente.nl/ws/portalfiles/portal/129917651/thesis_E_Groot_Jebbink.pdf

2.Groot Jebbink, E., Mathai, V., Boersen, J. T., Sun, C., Slump, C. H., Goverde, P. C., ... & Reijnen, M. M. (2017). Hemodynamic comparison of stent configurations used for aortoiliac occlusive disease. Journal of vascular surgery, 66(1), 251-260.

3. Engelhard, S., Voorneveld, J., Vos, H. J., Westenberg, J. J., Gijsen, F. J., Taimr, P., ... & Groot Jebbink, E. (2018). High-frame-rate contrast-enhanced US particle image velocimetry in the abdominal aorta: first human results. Radiology, 289(1), 119-125.

Expertise

  • Medicine and Dentistry

    • Stent
    • In Vitro
    • Abdominal Aortic Aneurysm
    • Endovascular Aneurysm Repair
    • Particle Image Velocimetry
    • Aneurysm
    • Blood Flow
    • Aortoiliac Occlusive Disease

Organisations

Publications

2025

Towards optimized abdominal aortic aneurysm care: Prediction of sac regression & 3D ultrasound (2025)[Thesis › PhD Thesis - Research external, graduation UT]. University of Twente. van Rijswijk, R. E.https://doi.org/10.3990/1.9789036569606Anatomical characteristics are associated with aneurysm sac regression after endovascular repair (2025)Journal of vascular surgery, 82(6), 2023-2035. van Rijswijk, R. E., Leeuwerke, S. J., Alblas, D., Geelkerken, R. H., Reijnen, M. M., Jebbink, E. G. & Wolterink, J. M.https://doi.org/10.1016/j.jvs.2025.07.045Interobserver variability in the preoperative assessment of future liver remnant function using hepatobiliary scintigraphy (2025)EJNMMI Research, 15(1). Article 68. de Vries, K., Oor, J. E., Fouraschen, S. M. G., de Boer, M. T., Nijkamp, M. W., Jebbink, E. G., Stormezand, G. N. & Ruiter, S. J. S.https://doi.org/10.1186/s13550-025-01261-3The influence of hepatic arterial blood flow rate on holmium microsphere distribution: an MRI study in perfused porcine livers (2025)European radiology experimental, 9(1). Article 69. Snoeijink, T. J., van den Brekel, A., van der Hoek, J. L., Greve, J. G. M., Remco Liefers, H., Boswinkel, M., Ruiter, S. J. S., Roosen, J., Groot Jebbink, E. & Nijsen, J. F. W.https://doi.org/10.1186/s41747-025-00609-7Vascular Blood Flow Imaging: Pushing Boundaries, Shaping the Future (2025)In 2025 IEEE International Ultrasonics Symposium, IUS 2025 (IEEE International Ultrasonics Symposium, IUS). IEEE. Ruisch, J., Van De Velde, L., De Korte, C. L., Holewijn, S., Jebbink, E. G., Versluis, M., Saris, A. E. C. M. & Reijnen, M. M. P. J.https://doi.org/10.1109/IUS62464.2025.11201613Feasibility of Laser Speckle-Based Perfusion Imaging in an Ex-Vivo Liver Model (2025)IEEE journal of translational engineering in health and medicine, 13, 437-449. Chizari, A., van der Hoek, J. L., Rook, A. R. D., Krommendijk, M. E., Snoeijink, T. J., Visser, A., Knop, T., Arens, J., Manohar, S., Steenbergen, W. & Groot Jebbink, E.https://doi.org/10.1109/JTEHM.2025.3602158Optimizing the Radiopacity of an Injectable Polymer on Fluoroscopy used for Treatment of Type II Endoleak After Endovascular Aneurysm Repair (2025)Cardiovascular engineering and technology, 16(4), 377-385. Nagel, J. R., Groot Jebbink, E., Smorenburg, S. P. M., Hoksbergen, A. W. J., Lely, R. J., Versluis, M. & Reijnen, M. M. P. J.https://doi.org/10.1007/s13239-025-00779-wImaging Behind the Plaque: Improved Blood Flow Quantification Using an Iterative Scheme for Active Attenuation Correction (2025)Ultrasound in medicine and biology, 51(6), 984-998. Plomp, J., Ghanbarzadeh-Dagheyan, A., Versluis, M., Lajoinie, G. & Groot Jebbink, E.https://doi.org/10.1016/j.ultrasmedbio.2025.02.012Ultrasound-based Velocity Vector Imaging in the Carotid Bifurcation: Repeatability and an In Vivo Comparison With 4-D Flow MRI (2025)Ultrasound in medicine and biology, 51(6), 969-976. Ruisch, J., de Bakker, J. M. K., van Helvert, M., Schoonbrood, M. J. P., Groot Jebbink, E., Holewijn, S., Reijnen, M. M. P. J., de Korte, C. L. & Saris, A. E. C. M.https://doi.org/10.1016/j.ultrasmedbio.2025.02.008Vascular Flow Phantom of A Cohort-Based Averaged Abdominal Aortic Aneurysm: Design, Fabrication and Characterization (2025)Annals of biomedical engineering, 53(6), 1439-1452. Article 105358. Mirgolbabaee, H., Nagel, J. R., Plomp, J., Ghanbarzadeh-Dagheyan, A., Simmering, J. A., Versluis, M., Reijnen, M. M. P. J. & Jebbink, E. G.https://doi.org/10.1007/s10439-025-03717-y

Research profiles

Address

University of Twente

Technohal (building no. 18), room 2184
Hallenweg 5
7522 NH Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard