Welcome...

dr.ir. E.M. Horstman (Erik)

Assistant Professor

About Me

I am trained as a Civil Engineer (BSc, MSc) at the University of Twente. For my PhD (completed in 2014, University of Twente/National University of Singapore) I studied short-term biophysical interactions in mangrove forests in Thailand. I joined the University of Waikato (New Zealand) as a Research Fellow in 2015, studying thresholds to sediment dynamics in mangroves. In 2018 I obtained my current position as Assistant Professor at the University of Twente, combining my Mangrove-RESCUE research with training the next generation of civil engineers/coastal scientists.

Expertise

Mangrove
Vegetation
Sediment
Hydrodynamics
Creek
Routing
Canopy
Seedlings

Research

My scientific interests revolve around pioneering research into the biophysical interactions in mangrove ecosystems. Thriving at the dynamic interface between land and sea, mangroves form a significant source of drag, attenuating tidal currents and waves. Consequently, mangroves are known as sediment-trapping environments.

I believe that observations are the basis for understanding natural systems, so my work hinges on the collection of field and experimental data. In numerous challenging field campaigns, I collected datasets with comprehensive observations of hydrodynamics, sediment dynamics, vegetation parameters and related physical and biological parameters. These observations have directly enhanced our understanding of for example tidal flow routing, wave attenuation and deposition patterns in mangroves.

In my PhD research, I employed field data for the calibration and validation of a numerical model simulating sediment dynamics in mangroves. This endeavour showed great potential for predicting longer-term mangrove development, but also revealed the relevance of unknown system parameters related to drag forces and sediment dynamics.

My current research addresses turbulent processes in mangroves, aiming to unravel spatial and temporal variations in these drag forces and sediment dynamics. These unique observations from the field will feed into more accurate process-based models of the short-term dynamics in mangroves.

Building upon these obtained insights, I aim to develop accurate yet efficient models simulating the long-term biophysical development of mangrove ecosystems. Such models will help predict and assess the contribution of mangroves to coastal stability and safety and to address potential compromising effects of human activities on these regulating services provided by mangroves.

Publications

Recent
Horstman, E. M., Lundquist, C. J., Bryan, K. R., Bulmer, R. H., Mullarney, J. C., & Stokes, D. J. (2018). The dynamics of expanding mangroves in New Zealand. In Australian Mangrove and Saltmarsh Network Conference: Mangroves and Saltmarsh - the Urban Survivors', Abstract Booklet (pp. 29-29)
Horstman, E. M., Lundquist, C. J., Bryan, K. R., Bulmer, R. H., Mullarney, J. C., & Stokes, D. J. (2018). The Dynamics of Expanding Mangroves in New Zealand. In C. Makowski, & C. W. Finkl (Eds.), Threats to Mangrove Forests: Hazards, Vulnerability, and Management (Vol. 25, pp. 23-51). (Coastal Research Library; Vol. 25). DOI: 10.1007/978-3-319-73016-5_2
Horstman, E. M., Bryan, K. R., Mullarney, J. C., Pilditch, C. A., & Eager, C. A. (2018). Are flow-vegetation interactions well represented by mimics? A case study of mangrove pneumatophores. Advances in water resources, 111, 360-371. DOI: 10.1016/j.advwatres.2017.11.018
Horstman, E. M., Bryan, K. R., & Mullarney, J. C. (2017). The role of mangroves in a changing coastal environment. Abstract from New Zealand Coastal Society (NZCS) 25th annual conference 2017, Tauranga, New Zealand.
Horstman, E. M., Mullarney, J. C., Bryan, K. R., & Sandwell, D. R. (2017). Deposition gradients across mangrove fringes. In T. Aagaard, R. Deigaard, & D. Fuhrman (Eds.), Proceedings of Coastal Dynamics 2017 (pp. 911-922). [12] Helsingør, Denmark.
Horstman, E. M., Bryan, K. R., Mullarney, J. C., & Pilditch, C. A. (2016). Model versus nature: Hydrodynamics in mangrove pneumatophores. In P. Lynett (Ed.), Proceedings of the 35th International Conference on Coastal Engineering, ICCE 2016 (Vol. 35). American Society of Civil Engineers.
Sauvage, S. (Ed.), Filatova, T., Horstman, E., Sanchez-Perez, J. M. (Ed.), Hulscher, S. J. M. H., Rizolli, A. (Ed.), ... Waard, J. (2016). Modelling adaptive behaviour in spatial agent-based models: coastal cities and climate change. 1-1. Abstract from 8th International Congress on Environmental Modelling and Software 2016, Toulouse, France.

UT Research Information System

Google Scholar Link

Affiliated Study Programmes

Bachelor

Master

Projects

Mangrove-RESCUE: Mangrove Resilience for Enhanced Safety of Coastal Urbanisations and Environments

Mangrove ecosystems shelter tropical and subtropical shorelines. Their natural resilience allows them to recover from erosion events and to adapt to changing conditions. This study measures and simulates processes that influence this resilience, enabling the long-term prediction and protection of mangrove development and their contribution to coastal safety.

Contact Details

Visiting Address

University of Twente
Faculty of Engineering Technology
Horst - Ring (building no. 21)
De Horst 2
7522LW  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Engineering Technology
Horst - Ring
P.O. Box 217
7500 AE Enschede
The Netherlands

Additional Contact Information

 

Social Media