Welcome...

dr. E. Mocanu (Elena)

Assistant Professor

Expertise

Engineering & Materials Science
Deep Learning
Energy Utilization
Feature Extraction
Machine Learning
Neural Networks
Reinforcement Learning
Smart Power Grids
Uncertainty

Publications

Recent
Liu, S., Chen, T. , Atashgahi, Z., Chen, X., Sokar, G. , Mocanu, E., Pechenizkiy, M., Wang, Z. , & Mocanu, D. C. (2022). Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity. In The Tenth International Conference on Learning Representations, ICLR 2022 OpenReview. https://openreview.net/forum?id=RLtqs6pzj1-&noteId=d7CKVDyMGZi
Liu, S., Chen, T. , Atashgahi, Z., Chen, X., Sokar, G. A. Z. N. , Mocanu, E., Pechenizkiy, M., Wang, Z. , & Mocanu, D. C. (2021). FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training with Dynamic Sparsity. Poster session presented at Sparsity in Neural Networks: Advancing Understanding and Practice 2021, Online.
Sokar, G. A. Z. N. , Mocanu, E. , Mocanu, D. C., Pechenizkiy, M., & Stone, P. (2021). Dynamic Sparse Training for Deep Reinforcement Learning (Poster). Poster session presented at Sparsity in Neural Networks: Advancing Understanding and Practice 2021, Online.
Atashgahi, Z., Sokar, G. A. Z. N., van der Lee, T. , Mocanu, E. , Mocanu, D. C. , Veldhuis, R. N. J., & Pechenizkiy, M. (2021). Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders (Extended Abstract). In BNAIC/BENELEARN 2021: The 33rd Benelux Conference on Artificial Intelligence and the 30th Belgian Dutch Conference on Machine Learning
Atashgahi, Z., Sokar, G. A. Z. N., van der Lee, T. , Mocanu, E. , Mocanu, D. C. , Veldhuis, R. N. J., & Pechenizkiy, M. (Accepted/In press). Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders (poster). Poster session presented at Sparsity in Neural Networks: Advancing Understanding and Practice 2021, Online.
Sokar, G. , Mocanu, E. , Mocanu, D. C., Pechenizkiy, M., & Stone, P. (2021). Dynamic Sparse Training for Deep Reinforcement Learning. (arXiv.org). arXiv.org.
Mocanu, D. C. , Mocanu, E., Pinto, T., Curci, S., Nguyen, P. H., Gibescu, M., Ernst, D., & Vale, Z. (2021). Sparse Training Theory for Scalable and Efficient Agents. In AAMAS '21: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems (pp. 34-38) https://doi.org/10.5555/3463952.3463960
Mocanu, E. , Mocanu, D. C., Paterakis, N. G., & Gibescu, M. (2021). Forecasting. In T. Pinto, Z. Vale, & S. Widergren (Eds.), Local Electricity Markets (1 ed.). Elsevier. https://www.elsevier.com/books/local-electricity-markets/pinto/978-0-12-820074-2

UT Research Information System

Google Scholar Link

Contact Details

Visiting Address

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling (building no. 11)
Hallenweg 19
7522NH  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
P.O. Box 217
7500 AE Enschede
The Netherlands