TNW-NEM-IMS
TNW-EDU-CSE

Download CV (PDF)

Expertise

  • Material Science

    • Thin Films
    • Ferroelectric Material
    • Piezoelectricity
    • Film
    • Capacitor
    • Devices
  • Physics

    • Ferroelectricity
    • Substrates

Organisations

Perovskites form a class of metal oxide materials ABO3 with a diverse range of technologically important material properties. Here A and B are different metal ions. By (partially) substituting these ions with others, for example in AA’BO3 or ABB’O3, one can tailor the properties of the bulk material. These bulk properties are already fairly well known for many interesting perovskites.

For device applications, in particular the incorporation with Si technology, we develop processes to fabricate high quality –preferably epitaxial- thin films and multilayers of different types of perovskites, on different substrates (both –insulating perovskites and buffered Si). In that case the perovskite thin film is strained by the substrate, which in many cases has a significant influence on the film properties.

The influence of the strain on the crystallographic structure (change of lattice parameters and possibly polydomain growth) and the resulting effect on the material properties is studied experimentally and by detailed modeling.

In particular we have studied in detail the halfmetallic and ferromagnetic La0.4Sr0.6MnO3compound under different strain conditions, concentrating on the magnetic and electric properties. A detailed model is developed from which the potential landscape of the magnetization vector in the film can be predicted from the imposed substrate strain. The model was confirmed experimentally for many different strain conditions. Further we were able to relate the unit cel deformations to oxygen-octahedra deformations, which explain the changes in the coupling between the Mn spins.

Presently we work on the ferroelectric and piezoelectric group of materials, especially the subgroupof PbZr1-xTixO3. These materials are important for many micromechanical devices, supercapacitors, energy scavengers. We seek to optimize the piezoelectric and ferroelectric properties for specific applications varying the composition x taking account for the strain by different substrates and deposition conditions, both experimentally and by modeling these systems.

Publications

2024

Enhanced Piezoelectricity by Polarization Rotation through Thermal Strain Manipulation in PbZr0.6Ti0.4O3 Thin Films (2024)Advanced materials interfaces, 11(19). Article 2400048. Huang, S., Houwman, E., Gauquelin, N., Orekhov, A., Chezganov, D., Verbeeck, J., Hu, S., Zhong, G., Koster, G. & Rijnders, G.https://doi.org/10.1002/admi.202400048Toward Design Rules for Multilayer Ferroelectric Energy Storage Capacitors – A Study Based on Lead-Free and Relaxor-Ferroelectric/Paraelectric Multilayer Devices (2024)Advanced materials, 36(26). Article 2402070. Nguyen, M. D., Houwman, E. P., Birkhölzer, Y. A., Vu, H. N., Koster, G. & Rijnders, G.https://doi.org/10.1002/adma.202402070Revealing the effect of the Schottky barrier on the energy storage performance of ferroelectric multilayers (2024)Journal of alloys and compounds, 981. Article 173758. Sun, Z., Houwman, E. P., Wang, S., Nguyen, M. D., Koster, G. & Rijnders, G.https://doi.org/10.1016/j.jallcom.2024.173758Stabilizing Perovskite Pb(Mg0.33Nb0.67)O3-PbTiO3 Thin Films by Fast Deposition and Tensile Mismatched Growth Template (2024)ACS applied materials & interfaces, 16(10), 12744-12753. Ni, S., Houwman, E., Gauquelin, N., Chezganov, D., Van Aert, S., Verbeeck, J., Rijnders, G. & Koster, G.https://doi.org/10.1021/acsami.3c16241Using a perovskite oxide buffer layer on Ca2Nb3O10 nanosheets for the epitaxial growth of Pb(Zr0.52Ti0.48)O3 for electrode-free thin films (2024)Thin solid films, 790. Article 140190. Nunnenkamp, M., Perez, D., Smithers, M., Houwman, E., Rijnders, G. & Koster, G.https://doi.org/10.1016/j.tsf.2023.140190

2023

Structure evolution of the interfacial layer of BaTiO3 thin films during annealing process and related good resistive switching behaviors (2023)APL materials, 11(10). Article 101129. Sun, Z., Huang, S., Zhu, W., Birkhölzer, Y. A., Gao, X., Avila, R. A., Huang, H., Lou, X., Houwman, E. P., Nguyen, M. D., Koster, G. & Rijnders, G.https://doi.org/10.1063/5.0170098Effect of a niobium-doped PZT interfacial layer thickness on the properties of epitaxial PMN-PT thin films (2023)Journal of Applied Physics, 133(14). Article 145302. Boota, M., Houwman, E. P., Lanzara, G. & Rijnders, G.https://doi.org/10.1063/5.0139426On the importance of the SrTiO3 template and the electronic contact layer for the integration of phase-pure low hysteretic Pb(Mg0.33Nb0.67)O3-PbTiO3 layers with Si (2023)Applied physics A: Materials science and processing, 129(4). Article 275. Ni, S., Houwman, E., Koster, G. & Rijnders, G.https://doi.org/10.1007/s00339-023-06447-x

2022

Research profiles

Address

University of Twente

Carré (building no. 15), room C3215
Hallenweg 23
7522 NH Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard