As a Materials Scientist turned Mechanics researcher my research interests are in understanding the underlying physics of material behavior through computational mechanics. This requires inevitably developing algorithms for material behavior in different length scales as well as computational and analytical methods for scale transition. With the help of these then physically based material models at the macroscopic scale are developed which need fewer parameters and possess predictive capabilities. 

Expertise

  • Material Science

    • Strain
    • Material
    • Spring Steel
    • Austenite
    • Martensite
  • Engineering

    • Models
  • Physics

    • Model
    • Steel

Organisations

Understanding mechanical behavior of materials using computational models. 

- Modeling solid state microstructural changes:
   - Mechanically induced martensitic transformation and TRIP effect
   - Dynamic recrystallization
- Modeling microscopic material behavior:
   - Gradient enhanced crystal plasticity
   - Ductile damage evolution
- Formability and Fracture:
   - Damage to fracture in Advanced High Strength Steels
   - Edge ductility
- Analytical homogenization:
   - Mean field modeling of multiphase behavior
   - Rate independent Self Consistent polycrystal crystal plasticity

Publications

2023

Design of a new process route for closed die forging and subsequent energy-neutral heat treatment (2023)[Thesis › EngD Thesis]. University of Twente. Demirkol, Y.Initiation and growth of edge cracks after shear cutting of dual-phase steel (2023)International journal of advanced manufacturing technology, 127(5-6), 2327-2341. Khalilabad, M. M., Perdahcıoğlu, S., Atzema, E. & Boogaard, T. v. d.https://doi.org/10.1007/s00170-023-11482-2Modelling of yield point phenomenon in bake-hardening grade steel (2023)In Material Forming - The 26th International ESAFORM Conference on Material Forming – ESAFORM 2023 (pp. 1511-1520) (Materials Research Proceedings; Vol. 28). Association of American Publishers. Deshmane, N. S., Perdahcioglu, S. E. & van den Boogaard, T.https://doi.org/10.21741/9781644902479-163An In-Plane Bending Test to Characterize Edge Ductility in High-Strength Steels (2023)Journal of Materials Engineering and Performance, 32, 1892-1904. Khalilabad, M. M., Perdahcıoğlu, E. S., Atzema, E. H. & van den Boogaard, A. H.https://doi.org/10.1007/s11665-022-07202-8Response of 2D and 3D crystal plasticity models subjected to plane strain condition (2023)Mechanics Research Communications, 128. Article 104047. Mirhosseini, S., Perdahcıoğlu, E. S., Atzema, E. H. & van den Boogaard, A. H.https://doi.org/10.1016/j.mechrescom.2023.104047Prediction of texture-induced plastic anisotropy in AA6014-T4 aluminium sheets utilising two different crystal plasticity-based constitutive models (2023)[Book/Report › Book]. IOP Science. Wessel, A., Perdahcioglu, E., Butz, A., van den Boogaard, T. & Volk, W.https://doi.org/10.1088/1757-899X/1284/1/012059

2022

Periodic Homogenization in Crystal Plasticity: A Comparative Study Between 3D and 2D (2022)In Achievements and Trends in Material Forming- Peer-reviewed extended papers selected from the 25th International Conference on Material Forming, ESAFORM 2022 (pp. 2004-2011) (Key Engineering Materials; Vol. 926 KEM). Trans Tech Publications Ltd. Mirhosseini, S., Perdahcioglu, E. S., Soyarslan, C. & van den Boogaard, T.https://doi.org/10.4028/p-67326dEffect of temperature and heat generation on martensitic phase transformation in DH steels (2022)Results in materials, 14. Article 100281. Mirhosseini, S., Perdahcioglu, E. S., Atzema, E. H. & van den Boogaard, A. H.https://doi.org/10.1016/j.rinma.2022.100281Mechanical Behavior of Multi-Phase Steels Comprising Retained Austenite (2022)Materials, 15(2). Article 498. Perdahcıoğlu, E. S. & Geijselaers, H. J. M.https://doi.org/10.3390/ma15020498

Research profiles

Address

University of Twente

Horst Complex (building no. 20), room N121
De Horst 2
7522 LW Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard