SBD-PM
Workdays
even
odd
M
T
W
T
F
on campus
work from home
out of office

I support collaborative European and national projects within the Nano Electronic Materials (NEM) cluster. In a complementary approach, I identify relevant calls, provide hands-on support for proposals preparation and management of the awarded projects and coordinate the communication, dissemination, and exploitation activities. My affinity for this function relates to my background in materials science research (Ph.D., 2004, University of Groningen).

Organisations

Other contributions

P.-J. Zermatten, G. Gaudin, G. Maris, M. Miron and A. Schuhl, “Experimental evidence of interface resonance states in single-crystal magnetic tunnel junctions", Physical Review B 78, 033301 (2008).

E.P. Houwman, G. Maris, G.M. de Luca, N. Niermann, G. Rijnders, D.H.A. Blank, and S. Speller, “Out-of-plane magnetic domain structure in a thin film of La0.67Sr0.33MnO3 on SrTiO3 (001) observed by magnetic force microscopy”, Physical Review B, 77 (18) 184412 (2008).

G. Maris, O. Shklyarevskii, L. Jdira, J.G.H. Hermsen, and S. Speller, “One-dimensional structural and electronic properties of magnetite (110)”, Surface Science 600 (23) 5084 (2006).

G. Maris, L. Jdira, J.G.H. Hermsen, S. Murphy, G. Manai, I.V. Shvets, and S. Speller, “Nano-magnetic probing on magnetite (110)”, IEEE Transactions on Magnetics 42 (10) 2927 (2006).

G. Maris, L. Jdira, J. G. H. Hermsen, S. Murphy, G. Manai, I. V. Shvets, and S. Speller, “Towards Spin Polarized Scanning Tunneling Microscopy on magnetite (110)”, Japanese Journal of Applied Physics, 45 (3B) 2225 (2006).

K. Knizek, Z. Jirak, J. Hejtmanek, M. Veverka, M. Marysko, G. Maris, and T.T.M. Palstra, “Structural anomalies associated with the electronic and spin transitions in LnCoO3”, European Physical Journal B 47 (2) 213 (2005).

G. Maris, V. Volotchaev, and T.T.M. Palstra, “Effect of ionic size on the orbital ordering transition in REMnO3+δ”, New Journal of Physics 6: 153 (2004).

G. Maris, Y.Ren, V. Volotchaev, C. Zobel, T. Lorenz, and T.T.M. Palstra, “Evidence for orbital ordering in LaCoO3”, Physical Review B, 67 (22) 224423 (2003).

P.H.M. van Loosdrecht, C. Presura, M. Popinciuc, D. van der Marel, G. Maris, T.T.M. Palstra, P.J.M. van Bentum, H. Yamada, T. Yamauchi, and Y. Ueda, “Charge and Sodium ordering in β-Na0.33V2O5” , Journal of Superconductivity: Incorporating Novel Magnetism, 15, 587 (2002).

S.G. Bompadre, A.F. Hebard, V.N. Kotov, D. Hall, G. Maris, J. Baas, and T.T.M. Palstra, “Spin-Peierls transition in NaV2O5 in high magnetic fields”, Physical Review B, 61 (20) R13321 (2000).

Current projects

Hybrid electronic-photonic architectures for brain-inspired computing (HYBRAIN)

coordinated by Prof. Dr. Ir. W.G. van der Wiel

The European Commission-funded Pathfinder project HYBRAIN aims to deliver a new computing system that is inspired by the human brain. The project will develop a “HYBRAIN system” that is both super-fast, consumes very little energy and which can make real impact on ‘ultra-fast response’ technologies. Partners: University of Twente, IBM Zürich, Trust-IT Services, University of Heidelberg, University of Oxford.

Netherlands Initiative for Energy-Efficient Computing (NL-ECO)

Coordinated by Prof. Dr. Ir. Hans Hilgenkamp

The NL-ECO program, part of the Dutch National Science Agenda (NWA), aims to develop new concepts and associated materials for energy-efficient information technologies. 33 academic, industrial, and societal organizations join forces on one of the major social challenges; how can the rapidly increasing consumption of energy in information and communication technologies be curbed?

On-chip integration of quantum electronics and photonics (ONCHIPS)

coordinated by Prof. Dr. Ir. F.A. Zwanenburg

The Horizon Europe project ONCHIPS aims to provide a unique silicon-based integrated architecture by developing key building blocks for quantum technologies. World leading experts joined the consortium to address the major key challenges in realizing this technology interfacing individual spin qubits and photons by using a new CMOS compatible and optically active material system - direct bandgap GeSi. Partners: University of Twente, TU Eindhoven, TU Münich, CNRS, Single Quantum, University of Konstanz and Budapest University of Technology and Economics.

Finished projects

Address

University of Twente

Carré (building no. 15), room C1427
Hallenweg 23
7522 NH Enschede
Netherlands

Navigate to location

Organisations

Additional contact information

<p><span></span>Carré,&nbsp;room C1427&nbsp;<span></span></p>
<p><span>&nbsp;</span></p>

Scan the QR code or
Download vCard