Dr. Hossein Aghababaei has held the position of Assistant Professor at the Faculty of ITC, University of Twente. His research is focused on synthetic aperture radar (SAR) data analysis, with a particular specialization in Polarimetric SAR (#PolSAR) and SAR tomography (#TomoSAR). His research interests are closely aligned with applications pertaining to the forestry sector, specifically the investigation of forest structures (#3D forest) through the utilization of SAR tomography.

Expertise

  • Earth and Planetary Sciences

    • Synthetic Aperture Radar
    • Tomography
    • Image
    • Datum
  • Computer Science

    • Synthetic Aperture Radar Images
    • Models
    • Detection
  • Engineering

    • Scatterer

Organisations

Publications

2025

A joint real- and complex-valued network for classification of Pol(In)SAR images (2025)IEEE Journal of selected topics in applied earth observations and remote sensing, 18, 22256-22270. Ma, Y., Aghababaei, H., Chang, L., Deng, X. & Wei, J.https://doi.org/10.1109/JSTARS.2025.3602161An open-access cross-modal forest benchmark training dataset with Sentinel-1 and Lidar data (2025)[Contribution to conference › Paper] IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2025. Aghababaei, H., Ferraioli, G., Schirinzi, G., Tomppo, E. & Parks, J.TomoSAR from Theory to Practice – Overview of the Advancements and Challenges (2025)[Contribution to conference › Paper] IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2025. Aghababaei, H. & Ferraioli, G.Deep learning segmentation approach for forest height retrieval with multichannel SAR (2025)[Contribution to conference › Abstract] Living Planet Symposium 2025. Yang, W., Vitale, S., Aghababaei, H., Ferraioli, G., Pascazzio, V. & Schirinzi, G.https://lps25.esa.int/programme/programme-session/?id=B3DC5187-04FB-4347-81CA-BB1D81A18F53&presentationId=B2AD938D-D595-4FDF-AB20-63293A080BF8Deep learning-based phase calibration of airborne SAR Tomography (2025)[Contribution to conference › Abstract] Living Planet Symposium 2025. Zamani, R., Aghababaei, H. & Ferraioli, G.https://lps25.esa.int/programme/programme-session/?id=B3DC5187-04FB-4347-81CA-BB1D81A18F53&presentationId=B2AD938D-D595-4FDF-AB20-63293A080BF8Dual Polarimetric Radar Vegetation Index for monitoring forest moisture stress using time series of Sentinel‐1 SAR data (2025)Plant Biology (E-pub ahead of print/First online). Ranjit, B., Bijker, W., Aghababaei, H. & Stein, A.https://doi.org/10.1111/plb.70036A Deep Learning Solution for Phase Screen Estimation in SAR Tomography (2025)IEEE geoscience and remote sensing letters, 22. Article 4007605. Aghababaei, H., Ferraioli, G., Vitale, S. & Stein, A.https://doi.org/10.1109/LGRS.2025.3555441

2024

Visual Question Answering for Wishart H-Alpha Classification of Polarimetric SAR Images (2024)In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (pp. 11231-11234) (IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Vol. 2024). IEEE. Aghababaei, H. & Stein, A.https://doi.org/10.1109/IGARSS53475.2024.10641895Despeckling SAR Images With Log-Yeo–Johnson Transformation and Conditional Diffusion Models (2024)IEEE transactions on geoscience and remote sensing, 62. Article 5215417. Ma, Y., Ke, P., Aghababaei, H., Chang, L. & Wei, J.https://doi.org/10.1109/TGRS.2024.3419083A TomoSAR regularization-based method for height change detection in urban areas (2024)International Journal of Applied Earth Observation and Geoinformation (JAG), 129. Armeshi, H., Sahebi, M. R. & Aghababaei, H.https://doi.org/10.1016/j.jag.2024.103852

Research profiles

Courses academic year 2025/2026

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.

Courses academic year 2024/2025

Address

University of Twente

Langezijds (building no. 19), room 1326
Hallenweg 8
7522 NH Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard