AI & Data Scientist with 8 years of experience in developing and optimizing AI models for complex data-driven challenges. Strong background in research and interdisciplinary collaboration, with a proven record of publishing in top-tier scientific venues. Skilled in bridging communication gaps between technical and non-technical teams, especially in AI applications.
Expertise
Veterinary Science and Veterinary Medicine
- Horse
- Sacrum
Earth and Planetary Sciences
- Gait
- Investigation
- Sport
Physics
- Independent Variables
- Model
- Physical Exercise
Organisations
Publications
2024
Non-invasive fitness assessment in horses: Integrating wearables and machine learning (2024)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Darbandi, H.https://doi.org/10.3990/1.9789036561532
2023
Detecting fatigue of sport horses with biomechanical gait features using inertial sensors (2023)PLoS ONE, 18(4). Article e0284554. Darbandi, H., Munsters, C., Parmentier, J. I. M. & Havinga, P. J. M.https://doi.org/10.1371/journal.pone.0284554
2022
Quantitative detection of fatigue in sport horses using inertial sensors and machine learning (2022)Comparative Exercise Physiology, 18(Suppl. 1), S55-S55. Darbandi, H., Munsters, C. B. M., Parmentier, J. I. M. & Havinga, P. J. M.https://doi.org/10.3920/cep2022.s1A Machine Learning Approach to Analyze Rider’s Effects on Horse Gait Using On-Body Inertial Sensors (2022)[Contribution to conference › Other] 20th International Conference on Pervasive Computing and Communications, PerCom 2022. Darbandi, H. & Havinga, P. J. M.https://www.bing.com/videos/search?q=A+Machine+Learning+Approach+to+Analyze+Rider%e2%80%99s+Effects+on+Horse+Gait+Using+On-Body+Inertial+Sensors&qpvt=A+Machine+Learning+Approach+to+Analyze+Rider%e2%80%99s+Effects+on+Horse+Gait+Using+On-Body+Inertial+Sensors&view=detail&mid=2D9C40DCF18A660190782D9C40DCF18A66019078&&FORM=VRDGAR&ru=%2Fvideos%2Fsearch%3Fq%3DA%2BMachine%2BLearning%2BApproach%2Bto%2BAnalyze%2BRider%25e2%2580%2599s%2BEffects%2Bon%2BHorse%2BGait%2BUsing%2BOn-Body%2BInertial%2BSensors%26qpvt%3DA%2BMachine%2BLearning%2BApproach%2Bto%2BAnalyze%2BRider%25e2%2580%2599s%2BEffects%2Bon%2BHorse%2BGait%2BUsing%2BOn-Body%2BInertial%2BSensors%26FORM%3DVDREEstimation of hoof-on/off moments using inertial sensors and deep learning (2022)Comparative Exercise Physiology, 18(Suppl. 1), S54-S54. Darbandi, H., Serra Bragança, F. M., van der Zwaag, B. J., Rhodin, M., Hernlund, E., Hobbs, S. J., Clayton, H. M. & Havinga, P. J. M.https://doi.org/10.3920/cep2022.s1The effect of standardised exercise tests on equine kinematics varies between disciplines (2022)Comparative Exercise Physiology, 18(Suppl. 1), S74-S74. Parmentier, J. I. M., Darbandi, H., Munsters, C. C. B. M. & Serra Bragança, F. M.https://doi.org/10.3920/cep2022.s1
2021
Using different combinations of body-mounted IMU sensors to estimate speed of horses: A machine learning approach (2021)Sensors (Switzerland), 21(3). Article 798. Darbandi, H., Bragança, F. S., van der Zwaag, B. J., Voskamp, J., Gmel, A. I., Haraldsdóttir, E. H. & Havinga, P.https://doi.org/10.3390/s21030798
Research profiles
Address
University of Twente
Zilverling (building no. 11), room 5009
Hallenweg 19
7522 NH Enschede
Netherlands
University of Twente
Zilverling 5009
P.O. Box 217
7500 AE Enschede
Netherlands
Organisations
Scan the QR code or
Download vCard
Download vCard