Welcome...

prof.Dr.-Ing. J. Arens (Jutta)

Full Professor

About Me

Consciously breathe in and out one time. This is exactly what you unconsciously do about 20,000 times a day to supply your body with oxygen. In some cases, however, various illnesses and diseases can interfere with the pulmonary gas exchange in the lungs and thus become a life-threatening problem. If medical treatment, drug therapy, and artificial respiration cannot help, artificial lungs can be used as an intensive care treatment.

The development of such artificial lungs into a realistic organ replacement is a dedicated research focus of Dr.-Ing. Jutta Arens, Professor and Chair of Engineering Organ Support Technologies at UTwente. Jutta works together with partners from the medical, natural, and engineering sciences inter alia as part of the German Research Foundation’s “Towards an Implantable Lung” priority program to address the diverse issues that arise from artificial lung systems in contact with blood. She combines engineering and medicine to the benefit of patients and contributes her knowledge on a national and international level to develop standards for testing and approving artificial organs in order to ensure patient safety. In her free time, she likes to take deep breaths while enjoying long-distance hikes.

Expertise

Engineering & Materials Science
Blood
Membranes
Oxygenation
Oxygenators
Medicine & Life Sciences
Gases
Heart-Lung Machine
Oxygenators
Chemistry
Oxygenation

Ancillary Activities

  • NEN and ISO
    Member of NEN and ISO
  • Whiley Journal "Transplant International"
    Co-Editor of the Journal "Transplant International"
  • German Federal Institute of Drugs and Medical Devices (BfArM)
    Member of the Scientific Advisory Board
  • MagAssist
    Scientific Advisor for MagAsisst
  • ASAIO
    Member of Board of Trustees of ASAIO

Research

The last two years, before coming to University of Twente in November 2019, Jutta Arens was the acting head of the Department of Cardiovascular Engineering, CVE, Institute of Applied Medical Engineering, RWTH Aachen University with the core competencies of the department being in the development of heart assist and lung assist devices and their preclinical testing including computer simulations and the development and design of special purpose in-vitro test setups. Within the CVE over the past decade Dr.-Ing. Jutta Arens build up the Group `Artificial Lung Technologies´, at the beginning mainly focusing on miniaturization concepts for oxygenators used for newborns and preterm infants. This resulted in research on a Heart-Lung Machine for neonates with congenital heart defects (her PhD project) and the artificial placenta system NeonatOx. Miniaturization and modularization concepts were investigated for ECMO systems for personalized treatment and to allow for the mobilization of ICU patients including the development of new production methods. An overarching goal has been the improvement of hemocompatibility of the assist devices in order to make them long-term stable. Therefore, the group worked on reliable CFD simulation concepts and flow visualization inside the oxygenators´ fiber bundle by PIV in order to be able to validate the flow simulations in detail and to better understand the flow distribution between the hollow fibers. Active mixing in the oxygenators´ fiber bundle, the simulation of the gas exchange, evaluate in vitro the modeling of thrombus growth, and the influence of pulsatile blood flow on the gas exchange capacity of oxygenators were research topics as well as the work on an alternative method for the connection of ECMO systems to patients. 

Jutta studied Mechanical Engineering at RWTH Aachen University with specilization in Plastics Technologie and Medical Engineering and performed her PhD at the above mentioned Institute in Aachen.

She now holds the Chair of Engineering Organ Support Systems within the Department of Biomechanical Engineering, Faculty of Engineering Technologies. Her research at UTwente will mainly focus on artificial organs such as Artificial Lungs (oxygenators), Heart Assist, and Kidney Replacement with strong emphasis of combining these therapies in highly integrated devices and increasing their long-term stability and blood-compatibility.

Publications

Recent
Strudthoff, L., Focke, J. M., Hesselmann, F., Kaesler, A. , Martins Costa, A., Schlanstein, P. C., Schmitz-Rode, T., Steinseifer, U., Steuer, N. B., Wiegmann, B. , Arens, J., & Jansen, S. V. (2023). Novel Size-Variable Dedicated Rodent Oxygenator for ECLS Animal Models: Introduction of the “Ratox” Oxygenator and Preliminary In-Vitro Results. Micromachines, 14(4), [800]. https://doi.org/10.3390/mi14040800
Duinmeijer, W. C. , Fresiello, L., Swol, J., Torrella, P., Riera, J., Obreja, V., Puślecki, M., Dąbrowski, M. , Arens, J. , & Halfwerk, F. R. (2023). Simulators and Simulations for Extracorporeal Membrane Oxygenation: An ECMO Scoping Review. Journal of Clinical Medicine, 12(5), [1765]. https://doi.org/10.3390/jcm12051765
Hugenroth, K., Krooß, F., Hima, F., Strudthoff, L., Kopp, R. , Arens, J., Kalverkamp, S., Steinseifer, U., Neidlin, M., & Spillner, J. (Accepted/In press). Inflow from a Cardiopulmonary Assist System to the Pulmonary Artery and Its Implications for Local Hemodynamics—a Computational Fluid Dynamics Study. Journal of cardiovascular translational research. https://doi.org/10.1007/s12265-022-10349-3
Vercaemst, L. , Arens, J., Maul, T., & Toomasian, J. (2022). The Circuit. In G. McLaren, D. Brodie, R. Lorusso, G. Peek, R. Thiagarajan, & L. Vercaemst (Eds.), Extracorporeal Life Support: The ELSO Red Book (6 ed., pp. 29-46). Extracorporeal Life Support Organization.
Arens, J., Schraven, L., Kaesler, A., Flege, C., Schmitz-Rode, T., Rossaint, R., Steinseifer, U., & Kopp, R. (2022). Development and evaluation of a variable, miniaturized oxygenator for various test methods. Artificial organs. https://doi.org/10.1111/aor.14465
Klein, M., Tack, J. C., Mager, I., Maas, J., Schmitz-Rode, T. , Arens, J., Steinseifer, U., & Clauser, J. C. (2022). In vitro thrombogenicity evaluation of rotary blood pumps by thromboelastometry. Biomedizinische Technik, 67(6), 471-480. https://doi.org/10.1515/bmt-2022-0078
Li, C. , Halfwerk, F. R. , Arens, J. , Misra, S., Warlé, M. C. , & S. M. Khalil, I. (2022). Controlled Helical Propulsion Against the Flow of a Physiological Fluid. Paper presented at 5th Annual International Conference on Manipulation, Automation and Robotics at Small Scales, MARSS 2021, Toronto, Ontario, Canada. https://doi.org/10.1109/marss55884.2022.9870248
Hesselmann, F., Halwes, M., Bongartz, P. , Wessling, M., Cornelissen, C., Schmitz-Rode, T., Steinseifer, U., Jansen, S. V. , & Arens, J. (2022). TPMS-based membrane lung with locally-modified permeabilities for optimal flow distribution. Scientific reports, 12(1), [7160]. https://doi.org/10.1038/s41598-022-11175-y
Strudthoff, L., Lüken, H., Jansen, S. V., Petran, J., Schlanstein, P. C., Schraven, L., Schürmann, B. J., Steuer, N., Wagner, G., Schmitz-Rode, T., Steinseifer, U. , Arens, J., & Kopp, R. (2022). In Vitro and In Vivo Feasibility Study for a Portable VV-ECMO and ECCO2R System. Membranes, 12(2), [133]. https://doi.org/10.3390/membranes12020133
Steuer, N. B., Schlanstein, P. C., Hannig, A., Sibirtsev, S., Jupke, A., Schmitz-Rode, T., Kopp, R., Steinseifer, U., Wagner, G. , & Arens, J. (2022). Extracorporeal Hyperoxygenation Therapy (EHT) for Carbon Monoxide Poisoning: In-Vitro Proof of Principle. Membranes, 12(1), [56]. https://doi.org/10.3390/membranes12010056
Hesselmann, F., Arnemann, D., Bongartz, P. , Wessling, M., Cornelissen, C., Schmitz-Rode, T., Steinseifer, U., Jansen, S. V. , & Arens, J. (2022). Three‐dimensional Membranes for Artificial Lungs: Comparison of Flow‐Induced Hemolysis. Artificial organs, 46(3), 412-426. https://doi.org/10.1111/aor.14081
Kaesler, A., Rudawski, F. L., Zander, M. O., Hesselmann, F., Pinar, I., Schmitz-Rode, T. , Arens, J., Steinseifer, U., & Clauser, J. (2022). In-Vitro Visualization of Thrombus Growth in Artificial Lungs Using Real-Time X-Ray Imaging: A Feasibility Study. Cardiovascular engineering and technology, 13(2), 318–330. https://doi.org/10.1007/s13239-021-00579-y
Fischbach, A., Wiegand, S. B., Zazzeron, L., Traeger, L., di Fenza, R., Bagchi, A., Farinelli, W. A., Franco, W., Korupolu, S. , Arens, J., Grassi, L., Zadek, F., Bloch, D. B., Anderson, R. R., & Zapol, W. M. (2022). Veno‐venous extracorporeal blood phototherapy increases the rate of carbon monoxide (CO) elimination in CO‐poisoned pigs. Lasers in surgery and medicine, 54(2), 256-267. https://doi.org/10.1002/lsm.23462
Hesselmann, F., Focke, J. M., Schlanstein, P. C., Steuer, N., Reinartz, S. D., Schmitz-Rode, T., Steinseifer, U., Jansen, S. V. , & Arens, J. (2022). Introducing 3D-potting: a novel production process for artificial membrane lungs with superior blood flow design. Bio-Design and Manufacturing, 5, 141-152. https://doi.org/10.1007/s42242-021-00139-2
Sales, M., Clauser, J. C., Schmitz-Rode, T., Linde, T., Mager, I., Maas, J., Steinseifer, U., Autschbach, R., Zayat, R. , Arens, J., & Schnoering, H. (2021). Exploration of appropriate anticoagulant reagents and reliability of porcine blood for in vitro evaluation of thrombogenicity. International Journal of Clinical and Experimental Medicine, 14(9), 2333-2342.
Clauser, J. , Halfwerk, F. R. , Arens, J., Maas, J., & Mager, I. (2021). Porcine Abattoir Blood as a Valid Model for In vitro Hemocompatibility Investigations. Poster session presented at 31st Conference of the European Society for Biomaterials, ESB 2021, Porto, Portugal.
Willers, A. , Arens, J., Mariani, S., Pels, H., Maessen, J. G., Hackeng, T. M., Lorusso, R., & Swol, J. (2021). New Trends, Advantages and Disadvantages in Anticoagulation and Coating Methods Used in Extracorporeal Life Support Devices. Membranes, 11(8), [617]. https://doi.org/10.3390/membranes11080617
Vatani, A., Liao, S., Burrell, A. J. C., Carberry, J., Azimi, M., Steinseifer, U. , Arens, J., Soria, J., Pellegrino, V., Kaye, D., & Gregory, S. D. (2021). Improved Drainage Cannula Design to Reduce Thrombosis in Veno-Arterial Extracorporeal Membrane Oxygenation. ASAIO Journal. https://doi.org/10.1097/mat.0000000000001440
Other Contributions

UT Research Information System

Google Scholar Link

Contact Details

Visiting Address

University of Twente
Faculty of Engineering Technology
Horst Complex (building no. 20), room W116
De Horst 2
7522LW  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Engineering Technology
Horst Complex  W116
P.O. Box 217
7500 AE Enschede
The Netherlands

Working days

Week Monday Tuesday Wednesday Thursday Friday
Even
Odd

Social Media