Welcome...

dr.ir. J.J. de Jong (Jan)

Assistant Professor

About Me

Interests
I am fascinated by moving mechanisms. In my current role as assistant professor, I try to translate design principles from the precision engineering field to other domains, such as medical devices and agro-food robotics. I am currently involved in two research projects in design of flexure-based grippers. Previously, I worked on medical robots (Msc and PDEng) and on dynamic balance. My interests include flexure-based mechanisms, static and dynamic balance, parallel robotics, kinematics, grippers and screw theory.

Research projects
FlexCRAFT - Within the FlexCRAFT program we aim to equip robot with flexure-based grippers that are able to handle delicate and deformable objects with varying shapes for the agro-food industry. Additive manufacturing of flexure-based grippers allow for seamless integration of functionalities such as remote sensing, under actuation and adjustable stiffness without compromising the strict hygiene requirements. In this program I coordinate the project 'Gripping and manipulation'.

Previous projects
IN-BALANCE - Cycle time reduction of commercial robots require faster robots without compromising the accuracy. Higher velocities and acceleration also increases the reaction force and moments at the base which in turn lead to undesired base vibrations. These vibrations reduce the accuracy of the end-effector and therefore require waiting times to let the vibrations dampen out. Dynamic balancing aims to distribute the mass of the mechanism such that these shaking forces and moments are eliminated. Considering dynamic balance at the beginning of the design process and the use of parallel mechanisms can reduce the complexity and added inertia of the balancing solution.

TMS Robot - A novel robot has been designed for the application of Transcranial magnetic stimulation (TMS) during motion therapies such as treadmill walking. As the velocity of the head during treadmill walking exceeds the velocity safety limits of conventional TMS robots, a novel robot design is required that combines high velocity with intrinsic safety.

Side projects
- Plot2LaTeX Exports a figure as a pdf file in vector format for inclusion into LaTeX.

Expertise

Engineering & Materials Science
Derivatives
Kinematics
Robots
Stiffness
Mathematics
Balancing
Contact Force
Higher Order Derivative
Robot

Publications

Recent
de Jong, J. J. , & Aarts, R. G. K. M. (2022). Static Balance of a Flexure-Based Four-Bar Mechanism: Less Torque with More Preload. In A. Müller, & M. Brandstötter (Eds.), Advances in Service and Industrial Robotics: RAAD 2022 (pp. 306-313). (Mechanisms and Machine Science; Vol. 120). Springer. https://doi.org/10.1007/978-3-031-04870-8_36
de Jong, J., Theans, S., Epping, L. , & Brouwer, D. M. (2021). Improving Support Stiffness of Flexure Mechanisms by Statically Balancing. 45-48. Paper presented at 36th Annual Meeting of the American Society for Precision Engineering, ASPE 2021, Minneapolis, United States.
Smelt, K. J. , de Jong, J. J., Blok, C. A. , & Brouwer, D. M. (2020). Optomechanical spherical manipulator with an adjustable center of rotation. 43-46. Paper presented at 35th Annual Meeting of the American Society for Precision Engineering, ASPE 2020, Virtual, Online.
de Jong, J. J., Schaars, B. E. M. , & Brouwer, D. M. (2019). The influence of flexibility on the force balance quality: a frequency domain approach. In Proceedings of the 19th international conference of the European Society for Precision Engineering and Nanotechnology (pp. 546-549)
de Jong, J. J., Wu, Y., Carricato, M. , & Herder, J. L. (2019). A pure-inertia method for dynamic balancing of symmetric planar mechanisms. In J. Lenarcic, & V. Parenti-Castelli (Eds.), Advances in Robot Kinematics 2018: International Symposium on Advances in Robot Kinematics (pp. 277-284). (Springer Proceedings in Advanced Robotics; Vol. 8). Springer. https://doi.org/10.1007/978-3-319-93188-3_32

UT Research Information System

Google Scholar Link

Affiliated Study Programmes

Bachelor

Master

Courses Academic Year  2021/2022

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.
 

Courses Academic Year  2020/2021

Contact Details

Visiting Address

University of Twente
Faculty of Engineering Technology
Horst Complex (building no. 20), room N140
De Horst 2
7522LW  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Engineering Technology
Horst Complex  N140
P.O. Box 217
7500 AE Enschede
The Netherlands