TNW-CE-SPT
  • Honorary Professor in Chemical biorefining at the University of Twente and formely senior Principal SCience Expert at Shell GLobal Solutions Int. B.V., amsterdam
  • 35 years of “discovery” research in industry on catalytic processes for manufacturing fuels and chemicals from fossil, renewable  and waste feedstocks.

PROFESSIONAL HISTORY & EDUCATION

  • Academic Research (2012 – today)University of Twente, Enschede, the Netherlands, Professor in Chemical Biorefining (2012 – today)
  • Industrial Research (1989 – today)Shell Technology Centre, Amsterdam, the NetherlandsPrincipal research chemist (2006 - today)Senior research chemist (1996 - 2006)Research chemist (1992 - 1996)Associate research chemist (1989 - 1992)
  • Post-Doc. (1987 – 1988)Lehigh University, Bethlehem (PA), USASupervisor: Prof. K. Klier
  • PhD. (1983 – 1987)Doktor der NaturwissenschaftenFritz-Haber-Institut der Max Planck Gesellschaft, Berlin, Germany Supervisor: Dr. H.G. KargeThesis: “Study of the deposition of coke onto Mordenite catalysts during the reaction with ethene” (in German)
  • Chem.Trainee (Aug. 1983)Zschimmer & Schwarz GmbH, Lahnstein, Germany
  • Graduation (1979 – 1983)Licencié en Sciences chimiques Université Notre-Dame de la Paix, Namur, Belgium Supervisor: Dr. J. B.NagyThesis: “Physicochemical properties of ZSM-5 and Mordenite zeolites exchanged with cesium: adsorption and reactivity of isopropanol” (in French)

COMPETENCIES

Technology

  • Applied heterogeneous catalysis for manufacturing fuels and chemicals, e.g. methane conversion, synthesis gas technologies, oil refining, petrochemicals manufacture, manufacture of bio-based fuels and bio-based chemicals
  • Spectroscopy on catalyst and adsorbates (including in situ)
  • Chemical engineering of catalytic processes, incl. reactor design, flow-sheeting, conceptual process design and manufacturing economics

Expertise

  • Chemistry

    • Procedure
    • Liquefaction
    • Bio-Oil
    • Chemical Reaction Product
    • Biomass
    • Solvent
  • Chemical Engineering

    • Furfural
    • Temperature

Organisations

Ancillary activities

  • Shell Global Solutions Int. B.V.Full time employed by Shell Global Solutions Int. B.V. with (unpaid) secondment to the UT for 1 day/week, effective since 2012.

Publications

2024

Lignocellulosic biomass to glycols: Simultaneous conversion of cellulose, hemicellulose and lignin using an organic solvent (2024)Biomass & bioenergy, 187. Article 107307. Di Sabatino, R., Kersten, S. R. A., Lange, J. P. & Ruiz, M. P.https://doi.org/10.1016/j.biombioe.2024.107307Furfural to Cyclopentanone – a Search for Putative Oligomeric By-products (2024)ChemSusChem, 17(12). Article e202400108. Baldenhofer, R., Lange, J. P., Kersten, S. R. A. & Ruiz, M. P.https://doi.org/10.1002/cssc.202400108Plastic recycling stripped naked – from circular product to circular industry with recycling cascade (2024)ChemSusChem, 17(12). Article e202301320. Lange, J. P., Kersten, S. R. A., De Meester, S., van Eijk, M. C. P. & Ragaert, K.https://doi.org/10.1002/cssc.202301320Furfural manufacture and valorization – A selection of recent developments (2024)Catalysis today, 435. Article 114726. Lange, J. P.https://doi.org/10.1016/j.cattod.2024.114726Liquid organic hydrogen carriers: Process design and economic analysis for manufacturing N-ethylcarbazole (2024)Journal of Advanced Manufacturing and Processing, 6(2). Article e10173. Uijthof, E. M. T., Chavan, B. S., Sluijer, M. J., Komath, V. C., van der Ham, A. G. J., van den Berg, H., Lange, J. P., Higler, A. & Wijnans, S.https://doi.org/10.1002/amp2.10173Montmorillonite K10-induced decomposition of methyl N-phenylcarbamate to phenylisocyanate and its prospect for recovering isocyanates from polyurethanes (2024)Molecular Catalysis, 556. Article 113930. Hosgor, E., Lee, C. K., Capra, N., Verboom, W., Lange, J. P. & Huskens, J.https://doi.org/10.1016/j.mcat.2024.113930Kinetics of Furfural Formation from Xylose via a Boronic Ester Intermediate (2024)ACS sustainable chemistry & engineering, 12(6), 2412-2420. van der Wal, P. J., Lange, J. P., Kersten, S. R. A. & Ruiz, M. P.https://doi.org/10.1021/acssuschemeng.3c07390

2023

Polyurethane Recycling: Thermal Decomposition of 1,3-Diphenyl Urea to Isocyanates (2023)Polymers, 15(11). Article 2522. Zamani, S., van der Voort, S. H. E., Lange, J.-P., Kersten, S. R. A. & Ruiz, M. P.https://doi.org/10.3390/polym15112522Process Development on the High-Yielding Reactive Extraction of Xylose with Boronic Acids (2023)Industrial & engineering chemistry research, 62(20), 8002-8009. van der Wal, P. J., Kersten, S. R. A., Lange, J.-P. & Ruiz, M. P.https://doi.org/10.1021/acs.iecr.3c00364Entrainer selection for the extractive distillation of acrylic acid and propionic acid (2023)Chemical engineering research and design (Transactions of the Institution of Chemical Engineers, part A), 192, 653-663. Keestra, H., Brouwer, T., Schuur, B. & Lange, J.-P.https://doi.org/10.1016/j.cherd.2023.02.049

Other contributions

PUBLICATIONS SORTED BY RESEARCH AREA

Incl. 5 book chapters (with *)

Biofuels and bio-based chemicals

  • 47. Liquefaction of Lignocellulose in Fluid Catalytic Cracker Feed: A Process Concept Study
  • S. Kumar, J.-P. Lange, G. van Rossum, S.R.A. Kersten;
  • ChemSusChem 2015, 8, 4086-4094 (DOI)
  • 46. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation
  • J.-P. Lange; Angew. Chem. Int. Ed. 2015, 54, 13186–13197 (DOI)
  • 45. Liquefaction of lignocellulose in fractionated light bio-oil: Proof of concept and techno-economic assessment
  • S. Kumar, J.-P. Lange, G. van Rossum, S.R.A. Kersten; ACS Sustainable Chemistry & Engineering 2015, 3, 2271-2280 (DOI)
  • 44. Bio-oil fractionation by temperature-swing extraction: Principle and application
  • S. Kumar, J.-P. Lange, G. Van Rossum, S.R.A. Kersten; Biomass and Bioenergy 2015, 83, 96-104 (DOI)
  • 43. A new approach for bio-oil characterization based on gel permeation chromatography preparative fractionation
  • M. Castellví Barnés, J.-P. Lange, G. van Rossum, S.R.A. Kersten, J. Anal. Appl. Pyrol. 2015, 113, 444–453 (DOI)
  • 42. Liquefaction of lignocellulose: Do basic and acidic additives help out?
  • S. Kumar, J.-P. Lange, G. van Rossum, S. Kersten, Chem. Eng. J. 2015, 278, 99-104 (DOI)
  • 41. Document Liquefaction of lignocellulose: Process parameter study to minimize heavy ends
  • Kumar, S., Lange, J.-P., Van Rossum, G., Kersten, S.R.A., Industrial and Engineering Chemistry Research 2014, 53 (29), 11668-11676 (DOI)
  • 40. Liquefaction of Lignocellulosic Biomass: Solvent, Process Parameter, and Recycle Oil Screening
  • G. van Rossum, W. Zhao, M. Castellvi Barnes, J.-P. Lange, S.R.A. Kersten, ChemSusChem 2014, 7(1), 253-259 (DOI)
  • 39. Furfural Production by ‘Acidic Steam Stripping’ of Lignocellulose
  • J. van Buijtenen, J.-P. Lange, L. Espinosa Alonso, W. Spiering, R. F. Polmans, R. J. Haan, ChemSusChem 2013, 6, 2132-2136 (DOI)
  • 38. Furfural – a promising platform for lignocellulosic biofuels
  • J.-P. Lange, E. van der Heide, J. van Buijtenen, R.J. Price, ChemSusChem 2012, 5, 150-166 (DOI)
  • 37. Valeric biofuels: a platform of cellulosic transportation fuels
  • J.-P. Lange, R. Price, P.M. Ayoub, J. Louis, L. Petrus, L. Clarke, J. Gosselink, Angew. Chem. Int. Ed., 2010, 49, 4479-4483 (DOI)
  • 36*. Cellulosic Biofuels – a sustainable option for transportation
  • J.-P. Lange, I. Lewandowski, P. Ayoub, in “Sustainable Development in the Process Industry – cases and impacts”, (Harmsen, Powell, eds) Wiley, 2010, 171-208 (DOI)
  • 35. Conversion of Furfuryl Alcohol into Ethyl Levulinate using Solid Acid Catalysts
  • J.-P. Lange, W.D. van de Graaf, and R.J. Haan, ChemSusChem 2009, 2, 437-441 (DOI)
  • 34. Cellulosic biofuels – a short introduction to manufacture and economics
  • J.-P. Lange, 15th Eur. Biomass conf. & Exhibition, Berlin, 7-11 May 2007, 1884-1886 (DOI)
  • 33. Lignocellulose conversion: an introduction to chemistry, process and economics
  • J.-P. Lange, Biofuels, Bioprod. Bioref., 2007, 1, 39-48 (DOI)
  • 32. Towards ‘bio-based’ nylon: conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions
  • J.-P. Lange, J.Z. Vestering, R.J. Haan, Chem. Commun., 2007, 3488-3490 (DOI)
  • 31*. Lignocellulose conversion: an introduction to chemistry, process and economics
  • J.-P. Lange, in ‘Catalysis for Renewables: from feedstock to energy production’ (eds. G. Centi and R.A. van Santen) Wiley-VCH, Weinheim, 2007, 238(1), 21-51 (DOI)

Chemical Manufacture

  • 30*. Resource efficiency of chemical manufacturing chains – present and future
  • J.-P. Lange, in “Sustainable Development in the Process Industry – cases and impacts”, (Harmsen, Powell, eds) Wiley, 2010, 23-38 (DOI)
  • 29. Sustainable Chemical Manufacturing: A Matter of Resources, Wastes, Hazards, and Costs.
  • Lange, J.-P., ChemSusChem 2009, 2, 587-592 (DOI)
  • 28*. Propylene epoxidation via Shell’s SMPO process: 30 years of research and operation
  • J.K.F. Buijink, J.-P. Lange, A.N.R. Bos, A.D. Horton, F.G.M. Niele, in ‘Mechanism in homogeneous and heterogeneous epoxidation catalysis’ (ed. S.T. Oyama) Elsevier, Amsterdam, 2008, 355-371 (DOI)
  • 27. Shell’s styrene monomer and propylene oxide (SMPO) process: Lessons learnt from 28 years of highly selective catalytic propylene epoxidation
  • J.K.F. Buijink, J.-P. Lange, A.N.R. Bos, A.D. Horton, F.G.M. Niele, Prep. Pap.-Am. Chem. Soc., Div. Petr. Chem., 2007, 52 (2), 229-232 (DOI)
  • 26. Dehydration of phenyl-ethanol to styrene under reactive distillation conditions: understanding the catalyst deactivation
  • J.-P. Lange, V. Otten, Ind. Eng. Chem. Res., 2007, 46, 6899-6903 (DOI)
  • 25. A novel reverse flow reactor with integrated separation
  • A.N.R. Bos, J.-P. Lange, G. Kabra, Chem. Eng. Sci. 2007, 62, 5661-5662 (DOI)
  • 24. Dehydration of phenyl-ethanol to styrene: zeolite catalysts operating under reactive distillation
  • J.-P. Lange, V. Otten, J. Catal., 2006, 238(1), 6-12 (DOI)
  • 23. Oxycracking of hydrocarbons: chemistry technology and economic potential
  • J.-P. Lange, R.J. Schoonebeek, P.G.D.L. Mercera, F.W. van Breukelen, Appl. Catal. A: General, 2005, 283, 243-253 (DOI)
  • 22. Monolithic catalysts for the fixed-bed hydrogenation of polymers
  • J.-P. Lange, L. Schoon, A. Villena, W. de Jong, Chem. Comm., 2004, 2864-2865 (DOI)
  • 21. Sustainable development: efficiency and recycling in chemicals manufacturing
  • J.-P. Lange, Green Chem., 2002, 4(6), 546-550 (DOI)
  • 20. Catalytic rearrangement of aliphatic hydroperoxides
  • J.-P. Lange, A.J.M. Breed, Cat. Comm., 2002, 3, 25-28 (DOI)
  • 19. Solid acid catalysts for converting alkenes and alkanols to carboxylic acids
  • J.-P. Lange, L. Petrus, Appl. Catal. A: General, 2001, 216, 285-294 (DOI)
  • 18. Mass transfer limitations in zeolite catalysts: the dehydration of 1-phenyl-ethanol to styrene
  • J.-P. Lange, C.M.A.M. Mesters, Appl. Catal. A: General, 2001, 210, 247-255 (DOI)
  • 17. Fuels and chemicals manufacturing: guidelines for understanding and minimising the production costs
  • J.-P. Lange, CatTech, 2001, 5(2), 82-95 (DOI)
  • 16. Catalysis research for improved process economics
  • J.-P. Lange, CatTech, 1999, 3(1), 51-52

Natural gas conversion to fuels and chemicals

  • 15*. Economics of alkane conversion
  • J.-P. Lange, in ‘Sustainable strategies for the upgrading of natural gas: fundamentals, challenges and opportunities’ (E.G. Derouane et al., eds) Kluwer 2005, pp. 51-83 (DOI)
  • 14. Methanol synthesis: a short review of technology improvements
  • J.-P. Lange, Catal. Today, 2001, 64, 3-8 (DOI)
  • 13. Perspectives for manufacturing methanol at fuel value
  • J.-P. Lange, Ind. Eng. Chem. Res., 1997, 36(10), 4282-4290 (DOI)
  • 12. Processes for Converting Methane to liquid Fuels: Economic Screening through Energy Management
  • J.-P. Lange, P.J.A. Tijm, Chem. Eng. Sci., 1996, 51, 2379-2387 (DOI)
  • 11. Keys to methane conversion technologies
  • J.-P. Lange, K.P. de Jong, J. Ansorge, P.J.A. Tijm, Studies in Surf. Sci. and Catal. 107, (1997), 81-86 (DOI)
  • 10. Conversion of Methane to Liquid Fuels and Bulk Chemicals. II. Indirect dehydrogenation routes
  • J.-P. Lange, Chimie Nouvelle, 1995, 13, 1433-1436 (DOI)
  • 09. Conversion of Methane to Liquid Fuels and Bulk Chemicals. I. Direct dehydrogenation routes
  • J.-P. Lange, Chimie Nouvelle, 1994, 12, 1403-1406 (DOI)

In-situ Spectroscopy in Catalysis

  • 08. U.v.-vis-n.i.r. studies of Fe(II)-A zeolite
  • J.-P. Lange, K. Klier, Zeolites, 1994, 14, 462-468 (DOI)
  • 07. Coke Formation through the reaction of ethene over hydrogen mordenite. III. IR and 13C-NMR studies
  • J.-P. Lange, A. Gutsze, J. Allgeier, Appl. Catal., 1988, 45, 345-356 (DOI)
  • 06. Coke Formation through the reaction of olefins over hydrogen mordenite. II. In situ EPR measurements under on-stream conditions
  • H.G. Karge, J.-P. Lange, A. Gutsze, M. Laniecki, J. Catal., 1988, 114, 144-152 (DOI)
  • 05. Coke Formation through the reaction of olefins over hydrogen mordenite. I. EPR measurements under static conditions (DOI)
  • J.-P. Lange, A. Gutsze, H.G. Karge, J. Catal., 1988, 114, 136-143
  • 04. Carbonisation of polyethylene over acidic zeolites
  • A. Gutsze, J.-P. Lange, H.G. Karge, J. Allgeier, J. Catal. 1988, 113, 525-528 (DOI)
  • 03. Oligomerization and coke formation on zeolites studied by ESR
  • A. Gutsze, H. Karge, J.P. Lange, Ser. Fiz. (Uniw. im. Adama Mickiewicza Poznaniu) 1985, 54 (Radio Microwave Spectrosc.), 119
  • 02. Studies on coke formation on dealuminated mordenites by in-situ IR and EPR measurements
  • H.G. Karge, E.P. Boldingh, J.-P. Lange, A. Gutsze, Acta Phys. Chem. 1985, 31 (1-2), 636-648
  • 01. Reactivity of isopropanol on K- and Cs-exchanged ZSM-5 and mordenite
  • B.Nagy, J., Lange, J.-P., Gourgue, A., Bodart, P., Gabelica, Z., in "Catalysis by acid and bases" (eds. B. Imelik et al.), Elsevier (1985), p. 127-134 (DOI)

Research profiles

Courses academic year 2024/2025

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.

Courses academic year 2023/2024