TNW-BET-AOT

I am a pharmaceutical and entrepreneurial scientist who has a passion to develop engineered therapeutics which are beyond the state-of-the-art therapeutics. My major focus ares are fibrosis and tumor microenvironment. I combine multiple disciplines of peptide chemistry, nanomedicine, molecular biology and bioengineering tools to address challenges of these complex pathologies. 

I have an educational background in Pharmacology and Targeted Drug Delivery. I obtained PhD (cum laude) in 2006 from University of Groningen (The Netherlands) to design drug targeting strategies against kidney fibrosis. I then worked as a Vice President – Preclinical Research at BiOrion Technologies with a joint position at the University of Groningen. In 2011, I joined Karolinska Institutet in Stockholm as Forskarassistent (Assistant Professor) by receiving several prestigious grants Swedish Cancer Foundation grant, Marie Curie Career Integration Grant and Swedish Research Council young researcher grant. I set up a team to research on finding new targets in the tumor microenvironment, in particular in cancer-associated fibroblasts (CAFs). Then I was offered a Tenure-Track professor position at University of Twente to set up the new line of tumor microenvironment and targeted therapeutics. In the past years, I have gained unique expertise in finding therapeutic targets in CAFs and immune cells and cell-specific targeting strategies to re-program the tumor microenvironment. I have set up a team to develop 3D bioengineered tumor models to test novel engineered therapeutics. In 2019, I visited School of Engineering and Applied Sciences (SEAS) in Harvard University for a few months and initiated new research collaborations.

Based on my inventions, I have founded a spin-off company ScarTec Therapeutics, which is developing novel peptide therapeutics for the treatment of organ fibrosis and tumor stroma. ScarTec has received NWO Take-off phase-1, phase-2 and H2020 SME phase-1 funding.

It was my honour to serve as the President of Controlled Release Society (CRS) local chapter for BeNeLux and France from 2021-2023.

Besides that, I founded the Nanomedicine meets The Tumor Microenvironment conference (NanoTME) in 2021 with an intention to bring research community from Nanomedicine and the tumor microenvironment fields together.

Since 2023, I am chairing the Advanced in vitro models theme for European Society of Molecular Imaging conference.

I am a board member of Innovation Funds Denmark - Grand Challenge and panel member for several national and international grant commissions.

In 2024, I was awarded with European Research Council (ERC) Advanced Grant of 2.5 million for 5 years to lead research on extracellular matrix remodelling to advance immunotherapy against pancreatic cancer.

Visit my research group   

Expertise

  • Pharmacology, Toxicology and Pharmaceutical Science

    • Neoplasm
    • Malignant Neoplasm
  • Medicine and Dentistry

    • Combination Therapy
    • Stroma
    • Peptide
    • Cells
  • Biochemistry, Genetics and Molecular Biology

    • Fibroblast
    • Integrin

Organisations

Ancillary activities

  • ScarTec TherapeuticsManagement of ScarTec Therapeutics

The lab is carrying out dynamic inter-disciplinary research in the field of peptide therapeutics, cell-specific targeted delivery and nanomedicine for the indications in the field of fibrotic diseases and (immuno)-oncology. 

In recent years, the significance of fibrosis in solid tumors has been highlighted in driving the tumor progression, invasion and metastasis. The crosstalk between tumor cells and stromal cells such as cancer-associated fibroblasts (CAFs), immune cells such as tumor-associated macrophages (TAMs) as well as extracellular matrix (ECM) is essential to maintain and stimulate the tumor growth and progression. The lab is, on the one hand, uncovering the underlying biology of tumor–stroma interaction, while on the other hand, developing innovative technologies to target specific tumor stromal cells to develop new therapeutics. 

 The lab has the following major research themes – 

  1. Understanding the crosstalk between different cell types within the tumor microenvironment, especially focused on fibroblasts, macrophages and matrix interaction. We have recently investigated the role of several therapeutic targets such as intergrin alpha5 and alpha11 which are involved in these crosstalks. 
  2. Peptide technologies as therapeutics to re-program the tumor microenvironment in order to enhance anti-tumour effect of chemotherapy – the lab has recently developed novel peptidomimetic against alpha5 which has led to the startup company ScarTec Therapeutics BV.
  3. Targeted nanomedicine to deliver therapeutic molecules (e.g. microRNA delivery, protein and peptide delivery) to specific cells within the tumor microenvironment to treat cancer. 
  4. Nanotheranostic approaches to probe the stromal cells and immune cells within the tumour microenvironment using novel targeting ligands with a goal of personalized medicine.
  5. 3D Bioengineering technologies to emulate the tumor microenvironment (e.g. multicellular tumor spheroids, tumor-on-chip models, 3D bioprinted tumor models). We have developed 3D heterospheroid tumor model to study nanomedicine and recently developed a novel 3D bioprinted mini-brain model.

Key Publications

  1. Prakash J and Shaked Y. The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discovery 2024 Aug 2;14(8):1375-1388. DOI: 10.1158/2159-8290.CD-24-0002 (Impact factor: 29.5)
  2. Kuninty, P. R., Binnemars-Postma K.A., Jarray A., Pednekar, K.P., Heinrich, M.A., Pijffers, H., ten Hoopen, H., Storm, G., van Hoogevest, P., den Otter, W., & Prakash J. (2022) Engineering "tail-flipping" nanoliposomes to alter functionality of alternatively-activated macrophages in tumors: a novel biomimicry approach. Nature Communications.  10.1038/s41467-022-32091-9 (Impact factor: 17.7)
  3. Heinrich MA, Uboldi I, Kuninty PR, Ankone MJK, van Baarlen J, Zhang YS, Jain K, Prakash J. (2022) Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioactive Materials. 22:18-33 (Impact factor 16.4)
  4. Kuninty, P. R., Bansal, R., S., D. G., Mardhian, D. F., Schnittert, J., van Baarlen, J., Storm, G., Bijlsma, M., van Laarhoven, Metselaar, J. M., Kuppen, P. J. K., Vahrmeijer, A., Ostman, A., Sier, C. F. M. & Prakash, J. (2019) ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer. Science Advances 4;5(9):eaax2770. doi: 10.1126/sciadv.aax2770. (Impact factor: 14.5)
  5. Heinrich MA, Bansal R, Lammers T, Zhang YS, Schiffelers RM, Prakash J. (2019) 3D-Bioprinted Mini-Brain: A Glioblastoma Model to Study cellular interactions and therapeutics. Advanced Materials. Apr;31(14):e1806590. (Impact factor: 30.1)
  6. Heinrich MA, Mostafa, AMRH, Morton J, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Del Rev. 174:265-2. (Impact factor: 17.8)
  7. Rodrigues, J. , Heinrich, M. A. , Teixeira, L. M. , & Prakash, J. (2020) 3D In Vitro Model (R)evolution: Unveiling Tumor–Stroma Interactions. Trends in cancer. doi.org/10.1016/j.trecan.2020.10.009 (Impact factor: 19.0)
  8. Schnittert J, Bansal R, van Baarlen J, Ostman A, Prakash J. (2019) Integrin alpha11 in pancreatic stellate cells regulates tumor stroma interaction in pancreatic cancer. FASEB J May;33(5):6609-6621. (Impact factor: 5.0)
  9. Mardhian D, Storm G, Mishra DP, Bansal R, Prakash J. (2018) Nano-targeted relaxin impairs fibrosis and improves the efficacy of gemcitabine in vivo. J Control Release. 28;290:1-10 (Impact factor: 11.5)

Publications

Jump to: 2024 | 2023 | 2022

2024

Novel targeting strategies to reprogram cancer-associated fibroblasts in the tumor microenvironment (2024)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Mostafa, A. M. R. H.https://doi.org/10.3990/1.9789036561334Polymeric nanofiber leveraged co-delivery of anti-stromal PAK1 inhibitor and paclitaxel enhances therapeutic effects in stroma-rich 3D spheroid models (2024)International journal of pharmaceutics, 656. Article 124078. M.R.H. Mostafa, A., Petrai, O., Poot, A. A. & Prakash, J.https://doi.org/10.1016/j.ijpharm.2024.124078Corrigendum to “Tissue-adhesive hydrogel for multimodal drug release to immune cells in skin” [Acta Biomaterialia Volume 150, Pages 211–220] (Acta Biomaterialia (2022) 150 (211–220), (S174270612200455X), (10.1016/j.actbio.2022.07.053)) (2024)Acta biomaterialia, 179, 398-398. Day, N. B., Dalhuisen, R., Loomis, N. E., Adzema, S. G., Prakash, J. & Shields, C. W.https://doi.org/10.1016/j.actbio.2024.04.004Understanding glioblastoma stromal barriers against NK cell attack using tri-culture 3D spheroid model (2024)Heliyon, 10(3). Article e24808. Heinrich, M. A., Huynh, N. T., Heinrich, L. & Prakash, J.https://doi.org/10.1016/j.heliyon.2024.e24808Retraction: Interferon gamma peptidomimetic targeted to interstitial myofibroblasts attenuates renal fibrosis after unilateral ureteral obstruction in mice (2024)Oncotarget, 15, 35. Poosti, F., Bansal, R., Yazdani, S., Prakash, J., Beljaars, L., van den Born, J., de Borst, M. H., van Goor, H., Hillebrands, J. L. & Poelstra, K.https://doi.org/10.18632/oncotarget.28532

2023

Repurposing Tamoxifen for Tumor Microenvironment Priming and Enhanced Tumor-Targeted Drug Delivery (2023)Advanced Therapeutics, 6(11). Article 2300098. Biancacci, I., De Santis, D., Rama, E., Benderski, K., Momoh, J., Pohlberger, R., Moeckel, D., Kaps, L., Rijcken, C. J. F., Prakash, J., Thewissen, M., Kiessling, F., Shi, Y., Peña, Q., Sofias, A. M., Consolino, L. & Lammers, T.https://doi.org/10.1002/adtp.202300098Repositioning the antihistamine ebastine as an intracellular siRNA delivery enhancer (2023)International journal of pharmaceutics, 644. Article 123348. Muntean, C., Blondeel, E., Harinck, L., Pednekar, K., Prakash, J., De Wever, O., Chain, J. L., De Smedt, S. C., Remaut, K. & Raemdonck, K.https://doi.org/10.1016/j.ijpharm.2023.123348INTEGRIN BINDING PEPTIDE AND USE OF THE SAME (2023)[Patent › Patent]. Prakash, J.Strategies to overcome barriers for cancer (nano)medicines (2023)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Priwitaningrum, D. L.https://doi.org/10.3990/1.9789036556163Evaluation of paclitaxel-loaded polymeric nanoparticles in 3D tumor model: impact of tumor stroma on penetration and efficacy (2023)Drug delivery and translational research, 13(5), 1470-1483. Priwitaningrum, D. L., Pednekar, K., Gabriël, A. V., Varela-Moreira, A. A., Gac, S. L., Vellekoop, I., Storm, G., Hennink, W. E. & Prakash, J.https://doi.org/10.1007/s13346-023-01310-1NANOTME2023 Abstract Book: 2nd International Conference on NANOMEDICINE meets the TUMOR MICROENVIRONMENT (2023)[Book/Report › Book editing] (In preparation). Prakash, J. & ten Hoopen, H. W. M.https://doi.org/10.3990/1.9789036556088Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model (2023)Bioactive Materials, 22, 18-33. Heinrich, M. A., Uboldi, I., Kuninty, P. R., Ankone, M. J. K., van Baarlen, J., Zhang, Y. S., Jain, K. & Prakash, J.https://doi.org/10.1016/j.bioactmat.2022.09.015In Vivo Detection of Circulating Cancer-Associated Fibroblasts in Breast Tumor Mouse Xenograft: Impact of Tumor Stroma and Chemotherapy (2023)Cancers, 15(4). Article 1127. Lu, T., Oomens, L., Terstappen, L. W. M. M. & Prakash, J.https://doi.org/10.3390/cancers15041127Endotoxin contamination alters macrophage-cancer cell interaction and therapeutic efficacy in pre-clinical 3D in vitro models (2023)Biomaterials Advances, 144. Article 213220. Heinrich, M. A., Heinrich, L., Ankone, M. J. K., Vergauwen, B. & Prakash, J.https://doi.org/10.1016/j.bioadv.2022.213220

2022

Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages (2022)Nature communications, 13(1). Article 4548. Kuninty, P. R., Binnemars-Postma, K., Jarray, A., Pednekar, K. P., Heinrich, M. A., Pijffers, H. J., ten Hoopen, H., Storm, G., van Hoogevest, P., den Otter, W. K. & Prakash, J.https://doi.org/10.1038/s41467-022-32091-9Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting (2022)Advanced drug delivery reviews, 189. Article 114504. Rimal, R., Desai, P., Daware, R., Hosseinnejad, A., Prakash, J., Lammers, T. & Singh, S.https://doi.org/10.1016/j.addr.2022.114504Managing microenvironments: Time to engineer medicines (2022)[Book/Report › Inaugural speech]. University of Twente. Prakash, J.Tissue-adhesive hydrogel for multimodal drug release to immune cells in skin (2022)Acta biomaterialia, 150, 211-220. Day, N. B., Dalhuisen, R., Loomis, N. E., Adzema, S. G., Prakash, J. & Shields IV, C. W.https://doi.org/10.1016/j.actbio.2022.07.053Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling (2022)Biofabrication, 14(3). Article 032002. Shukla, P., Yeleswarapu, S., Heinrich, M. A., Prakash, J. & Pati, F.https://doi.org/10.1088/1758-5090/ac6d11Targeting of macrophages and hepatic stellate cells for the treatment of liver diseases (2022)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Kurniawan, D. W.https://doi.org/10.3990/1.9789036553445Impact of endotoxins on bioengineered tissues and models (2022)Trends in biotechnology, 40(5), 532-534. Heinrich, M. A., Mangia, M. & Prakash, J.https://doi.org/10.1016/j.tibtech.2021.12.001Designing novel therapeutic strategies against tumor stroma and fibrosis (2022)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Mardhian, D. F.https://doi.org/10.3990/1.9789036553179Src kinase as a potential therapeutic target in non-alcoholic and alcoholic steatohepatitis (2022)Clinical and translational discovery, 2(1). Article e18. Kurniawan, D. W., Booijink, R. S., Jajoriya, A. K., Dhawan, G., Mishra, D., Oosterhuis, D., Argemi, J., Storm, G., Olinga, P., Bataller, R., Mohanty, S. K., Mishra, D. P., Prakash, J. & Bansal, R.https://doi.org/10.1002/ctd2.18Engineering the tumor microenvironment: Novel 3D in vitro models to study cellular interactions & therapeutics (2022)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Heinrich, M. A.https://doi.org/10.3990/1.97890365531623D in vitro Models to Mimic the Tumor Microenvironment (2022)In The Tumor Stroma: Biology and Therapeutics. Taylor & Francis. Alexander, M., Huynh, N. T., Zhang, Y. S. & Prakash, J.https://doi.org/10.1201/9781003224921-10

Research profiles

Affiliated study programs

Courses academic year 2024/2025

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.

Courses academic year 2023/2024

Address

University of Twente

Horst - Zuidhorst (building no. 28), room 246
De Horst 2
7522 LW Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard