My research focuses on the development of microfluidic systems for (bio)-medical applications, thereby increasing the knowledge of biological systems and improving the diagnostics and treatment of diseases.


  • Chemistry

    • Microfluidics
    • Procedure
    • Concentration
    • Deoxyribonucleic Acid
    • Device
  • Physics

    • Electrodes
    • Organ
    • Spermatozoa


Ancillary activities

  • NWOcommittee member NWO faculty of impact
  • ElsevierEditor sensors and actuators A

The focus of this theme is on the development of microfluidic systems for (bio)-medical applications, thereby increasing the knowledge of biological systems and improving the diagnostics and treatment of diseases. Microfluidics are a perfect tool for this, since dimensions comparable to single cells are used, low sample volumes are needed and multiple functionalities can be integrated in one platform. As an example electrodes can be integrated in in these devices, making electrical measurements on single cells such as sperm cells, or a tissue layer like the blood-brain barrier possible. By carefully analyzing these electrical signals, information about the morphology of the sperm cell or tightness of the tissue layer can be retrieved, which can be used to gain information about the semen quality or the functioning of the blood-brain barrier. Additional useful information can be retrieved form (automated) optical analysis using for instance fluorescence or bright field microscopy. So using these and other (new) techniques in combination with microfluidics, biomedical microdevices are developed that can finally be of use in the clinic. There are collaborations with other research groups at this and other universities, but also with doctors at the hospital, making it an applied multidisciplinary research area.


Microfluidic Impedance Cytometry for Single Sperm Analysis: Towards Morphology Characterization. University of Twente. Kruit, S. A. of cancer in urine. Rurup, W. F., Segerink, L., van den Berg, A., Kraaijenhagen, R., Pinedo, H. M., Steenbergen, R. D. M., Nieuwenhuijzen, J. A., Bahce, I. & Kazemier, G.Development of a Synovium-on-Chip Model with a Porous Membrane to Study Inflammatory Arthritis. Spoelstra, L. R., Araújo-Gomes, N., Zakharova - Kolezhuk, M., Welting, T. J. M., Karperien, M., Segerink, L. & Le Gac, S.Automated assessment of human engineered heart tissues using deep learning and template matching for segmentation and trackingBioengineering and Translational Medicine, 8(3), Article e10513. Rivera-Arbeláez, J. M., Keekstra, D., Cofiño-Fabres, C., Boonen, T., Dostanic, M., ten Den, S. A., Vermeul, K., Mastrangeli, M., van den Berg, A., Segerink, L. I., Ribeiro, M. C., Strisciuglio, N. & Passier, R. optical aptasensor for real-time quantification of endotoxin: From ensemble to single-molecule resolutionScience advances, 9(6), Article eadf5509. Zhu, P., Papadimitriou, V., van Dongen, J. E., Cordeiro, J., Neeleman, Y., Santoso, A., Chen, S., Eijkel, J. C. T., Peng, H., Segerink, L. & Rwei, A. the dots: Versatile and modular approach for engineering and analyzing three-dimensional cardiac tissues. University of Twente. Rivera Arbeláez, J. M.

Research profiles

Courses academic year 2023/2024

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.

Courses academic year 2022/2023

Selected projects:

  • Microfluidics systems for semen analysis;
  • Blood-brain barrier chip;
  • Nanopil 2.0 or early cancer diagnostics.

See for more details: department website

In the press




University of Twente

Carré (building no. 15), room C2415
Hallenweg 23
7522 NH Enschede

Navigate to location


Scan the QR code or
Download vCard