ET-CEM-MWM

I am an associate professor in Hydrology at the University of Twente, the Netherlands. I hold an MSc degree in Hydrology and Quantitative Water Management from Wageningen University and a PhD degree in Hydrology and Climatology from the University of Twente. My research interests and activities focus on catchment hydrology in general and modelling of hydrological systems, assessment of environmental change impacts on hydrology and water resources and uncertainty analysis in particular. These research themes are reflected in my past and on-going research projects, international collaboration and over 150 scientific publications. I was and am involved in projects and studies in many countries in the world including Indonesia, China, Vietnam, Pakistan, Iran, Rwanda, Kenya, Germany, France and Belgium. I teach in the area of hydrology, hydrological modelling and water management and supervise PhD students, MSc theses and BSc theses. I have contributed to international training courses in Indonesia and China and provided guest lectures and keynotes in several countries (e.g. China, Pakistan, India, Thailand, Vietnam, Poland).

For more information please see here and check my Google Scholar and ResearchGate pages for the latest updates.

Expertise

  • Earth and Planetary Sciences

    • Model
    • River
    • Investigation
    • Catchment
    • Low Flow
    • Structural Basin
    • Streamflow
    • Climate Change

Organisations

Publications

2024
Increasing the water level accuracy in hydraulic river simulation by adapting mesh level elevation, Article 106135, 106135 (E-pub ahead of print/First online). Khorsandi kuhanestani, P., Bomers, A., Booij, M. J., Warmink, J. J. & Hulscher, S. J. M. H.https://doi.org/10.1016/j.envsoft.2024.106135Real time probabilistic inundation forecasts using a LSTM neural network, Article 131082. Hop, F. j., Linneman, R., Schnitzler, B., Bomers, A. & Booij, M. j.https://doi.org/10.1016/j.jhydrol.2024.131082Satellite rainfall bias correction incorporating effects on simulated crop water requirements, 2269-2288. Omondi, C. k., Rientjes, T. H. M., Booij, M. j. & Nelson, A. D.https://doi.org/10.1080/01431161.2024.2326801Increasing water footprints of flex crops. Mialyk, O., Berger, M. & Booij, M. J.https://doi.org/10.5194/egusphere-egu24-1342Drought index downscaling using AI-based ensemble technique and satellite data, 2379-2397. Behfar, N., Sharghi, E., Nourani, V. & Booij, M. J.https://doi.org/10.1007/s00704-023-04822-5Improving mesh set-up increase accuracy of discharge capacity representation for water level prediction, 62-63. Khorsandi Kuhanestani, P., Bomers, A., Booij, M. J., Warmink, J. J. & Hulscher, S. J. M. H.https://cdn.bullit.digital/kbase/20240227205343/ncr-54-book_of_abstracts_ncrdays_2024_web.pdfModel identification and accuracy for estimation of suspended sediment load, 18520-18545. Khosravi, K., Golkarian, A., Saco, P. M., Booij, M. J. & Melesse, A. M.https://doi.org/10.1080/10106049.2022.2142964Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model, Article 206 (E-pub ahead of print/First online). Mialyk, O., Schyns, J. F., Booij, M. J., Su, H., Hogeboom, R. J. & Berger, M.https://doi.org/10.1038/s41597-024-03051-3Flood process types and runoff coefficient variability in climatic regions of Iran, 241-258. Jahanshahi, A. & Booij, M. J.https://doi.org/10.1080/02626667.2024.2302420
2023
Comparison between statistical and dynamical downscaling of rainfall over the Gwadar‐Ormara basin, Pakistan, Article e2151. Attique, R., Rientjes, T. & Booij, M.https://doi.org/10.1002/met.2151Key trends and opportunities in water footprints of crop production. Mialyk, O., Booij, M. J., Hogeboom, R. J. & Berger, M.https://doi.org/10.5194/egusphere-egu23-1556Exploring controls on rainfall–runoff events: spatial dynamics of event runoff coefficients in Iran, 954-966. Jahanshahi, A. & Booij, M. J.https://doi.org/10.1080/02626667.2023.2193297Uncertainty analysis of risk-based flood safety standards in the Netherlands through a scenario-based approach, 559-574. Westerhof, S. G., Booij, M. J., van den Berg, M. C. J., Huting, R. J. M. & Warmink, J. J.https://doi.org/10.1080/15715124.2022.2060243Improving mesh set-up to increase discharge capcity accuracy for water level prediction, 54-55. Khorsandi Kuhanestani, P., Bomers, A., Booij, M. J., Warmink, J. J. & Hulscher, S. J. M. H.https://cdn.bullit.digital/kbase/20230411204005/ncr-51-book_of_abstracts_ncrdays_2023_web.pdfImproving mesh set-up to increase cross-sectional-area accuracy for water-level prediction. Khorsandi Kuhanestani, P., Bomers, A., Booij, M. J., Warmink, J. J. & Hulscher, S. J. M. H.Simulated annealing coupled with a NaĂŻve Bayes model and base flow separation for streamflow simulation in a snow dominated basin, 89-112. Tongal, H. & Booij, M. J.https://doi.org/10.1007/s00477-022-02276-1
2022
Evaluation of MODIS-Landsat and AVHRR-Landsat NDVI data fusion using a single pair base reference image: a case study in a tropical upstream catchment on Java, Indonesia, 164-197. Rustanto, A. & Booij, M. J.https://doi.org/10.1080/17538947.2021.2018057Innovative polygon trend analysis of monthly precipitation (1952–2015) in the Hindukush‐Karakoram‐Himalaya river basins of Pakistan, 9967-9993. Ahmed, N., Lü, H., Booij, M. J., Wang, G., Marhaento, H., Bhat, M. S. & Adnan, S.https://doi.org/10.1002/joc.7875Variations in hydrological variables using distributed hydrological model in permafrost environment, Article 109609. Ahmed, N., Wang, G., Booij, M. J., Marhaento, H., Pordhan, F. A., Ali, S., Munir, S. & Hashmi, M. Z.-u.-r.https://doi.org/10.1016/j.ecolind.2022.109609Use of machine learning and geographical information system to predict nitrate concentration in an unconfined aquifer in Iran, Article 131847. Gholami, V. & Booij, M. j.https://doi.org/10.1016/j.jclepro.2022.131847Influences of reservoir operation on terrestrial water storage changes detected by GRACE in the Yellow River basin, Article 127924. Xie, J., Xu, Y.-p., Booij, M. J. & Guo, Y.https://doi.org/10.1016/j.jhydrol.2022.127924Satellite rainfall bias assessment for crop growth simulation: a case study of rainfed maize growth, 1-12. Omondi, C. K., Rientjes, T. H. M., Booij, M. J. & Nelson, A. D.Inventing a hydraulic river modelling approach to simulate high flow and low flow conditions, 58-59. Khorsandi Kuhanestani, P., Bomers, A., Booij, M. J., Warmink, J. J. & Hulscher, S. J. M. H.Effect of data length, spin-up period and spatial model resolution on fully distributed hydrological model calibration in the Moselle basin, 759-772. Ekmekcioğlu, Ö., Demirel, M. C. & Booij, M. J.https://doi.org/10.1080/02626667.2022.2046754Historical simulation of crop water and land footprints. Mialyk, O., Schyns, J. F. & Booij, M. J.https://doi.org/10.5194/egusphere-egu22-2022

Other contributions

International refereed journals (complete list)

[105] Omondi, C.K., Rientjes, T.H.M., Booij, M.J. and Nelson, A.D., 2024. Satellite rainfall bias correction incorporating effects on simulated crop water requirements. International Journal of Remote Sensing, 45, 2269-2288.

[104] Behfar, N., Sharghi, E., Nourani, V. and Booij, M.J., 2024. Drought index downscaling using AI-based ensemble technique and satellite data. Theoretical and Applied Climatology, 155, 2379–2397.

[103] Mialyk, O., Schyns, J.F., Booij, M.J., Su, H., Hogeboom, R.J. and Berger, M., 2024. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Scientific Data, 11, 206.

[102] Jahanshahi, A. and Booij, M.J., 2024. Flood process types and runoff coefficient variability in climatic regions of Iran. Hydrological Sciences Journal, 69, 241-258.

[101] Khosravi, K., Golkarian, A., Saco, P.M., Booij, M.J. and Melesse, A.M., 2024. Model identification and accuracy for estimation of suspended sediment load. Geocarto International, 37, 18520-18545.

[100] Jahanshahi, A. and Booij, M.J., 2023. Exploring controls on rainfall–runoff events: spatial dynamics of event runoff coefficients in Iran. Hydrological Sciences Journal, 68, 954-966.

[99] Attique, R., Rientjes, T. and Booij, M., 2023. Comparison between statistical and dynamical downscaling of rainfall over the Gwadar-Ormara basin, Pakistan. Meteorological Applications,30, e2151.

[98] Tongal, H. and Booij, M.J., 2023. Simulated annealing coupled with a Naïve Bayes model and base flow separation for streamflow simulation in a snow dominated basin. Stochastic Environmental Research and Risk Assessment, 37, 89–112.

[97] Westerhof, S.G., Booij, M.J., Van den Berg, M.C.J., Huting, R.J.M. and Warmink, J.J., 2023. Uncertainty analysis of risk-based flood safety standards in the Netherlands through a scenario-based approach. International Journal of River Basin Management, 21, 559-574.

[96] Ahmed, N., Wang, G., Booij, M.J., Marhaento, H., Pordhan, F.A., Ali, S., Munir, S. and Hashmi, M.Z.-u.-R., 2022. Variations in hydrological variables using distributed hydrological model in permafrost environment. Ecological Indicators, 145, 109609.

[95] Ahmed, N., Lu, H., Booij, M.J., Wang, G., Marhaento, H., Bhat, M.S. and Adnan, S., 2022. Innovative polygon trend analysis of monthly precipitation (1952–2015) in the Hindukush-Karakoram-Himalaya river basins of Pakistan. International Journal of Climatology, 42, 9967–9993.

[94] Xie, J., Xu, Y.P., Booij, M.J. and Guo, Y., 2022. Influences of reservoir operation on terrestrial water storage changes detected by GRACE in the Yellow River basin. Journal of Hydrology, 610, 127924.

[93] Gholami, V. and Booij, M.J., 2022. Use of machine learning and geographical information system to predict nitrate concentration in an unconfined aquifer in Iran. Journal of Cleaner Production, 360, 131847.

[92] Ekmekcioğlu, Ö, Demirel, M.C. and Booij, M.J., 2022. Effect of data length, spin-up period and spatial model resolution on fully distributed hydrological model calibration in the Moselle basin. Hydrological Sciences Journal, 67, 759-772.

[91] Ahmed, N., Wang, G., Booij, M.J., Ceribasi, G., Bhat, M.S., Ceyhunlu, A.I. and Ahmed, A., 2022. Changes in monthly streamflow in the Hindukush–Karakoram–Himalaya Region of Pakistan using innovative polygon trend analysis. Stochastic Environmental Research and Risk Assessment, 36, 811–830.

[90] Mialyk, O., Schyns, J.F., Booij, M.J. and Hogeboom, R.J., 2022. Historical simulation of maize water footprints with a new global gridded crop model ACEA. Hydrology and Earth System Sciences, 26, 923-940.

[89] Rustanto, A. and Booij, M.J., 2022. Evaluation of MODIS-Landsat and AVHRR-Landsat NDVI data fusion using a single pair base reference image: a case study in a tropical upstream catchment on Java, Indonesia. International Journal of Digital Earth, 15, 164-197.

[88] Gholami, V., Khaleghi, M.R., Pirasteh, S. and Booij, M.J., 2022. Comparison of self‑organizing map, artificial neural network, and co‑active neuro‑fuzzy inference system methods in simulating groundwater quality: geospatial artificial intelligence. Water Resources Management, 36, 451–469.

[87] Ahmed, N., Wang, G., Booij, M.J., Sun, X., Hussain, F. and Nabi, G., 2022. Separation of the impact of landuse/ landcover change and climate change on runoff in the upstream area of the Yangtze River, China. Water Resources Management, 36,181-201.

[86] Ahmed, N., Wang, G., LĂŒ, H., Booij, M.J., Marhaento, H., Prodhan, F.A., Ali, S. and Imran, M.A., 2022. Attribution of changes in streamflow to climate change and land cover change in Yangtze River Source Region, China. Water, 14, 259.

[85] Krol, M.S., Booij, M.J., Hogeboom, R.J., Karandish, F., Schyns, J.F. and Wang, R., 2022.  Arjen Y. Hoekstra: A water management researcher to be remembered. Water, 14, 50.

[84] Albers, L.T., Schyns, J.F., Booij, M.J. and Zhuo, L., 2021. Blue water footprint caps per sub-catchment to mitigate water scarcity in a large river basin: The case of the Yellow River in China. Journal of Hydrology, 603, 126992.

[83] Omondi, C.K., Rientjes, T.H.M., Booij, M.J. and Nelson, A.D., 2021. Satellite rainfall bias assessment for crop growth simulation – A case study of maize growth in Kenya. Agricultural Water Management, 258, 107204.

[82] Marhaento, H., Booij, M.J., Rahardjo, N. and Ahmed, N., 2021. Impacts of forestation on the annual and seasonal water balance of a tropical catchment under climate change. Forest Ecosystems, 8, 64.

[81] Khosravi, K., Golkarian, A., Booij, M.J., Barzegar, R., Sun, W., Mundher Yaseen, Z. and Mosavi, A., 2021. Improving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithms. Hydrological Sciences Journal, 66, 1457-1474.

[80] Gao, C., Guan, X., Booij, M.J., Meng, Y. and Xu, Y.P., 2021. A new framework for a multi-site stochastic daily rainfall model: Coupling a univariate Markov chain model with a multi-site rainfall event model. Journal of Hydrology, 598, 126478.

[79] Barzegar, R., Razzagh, S., Quilty, J., Adamowski, J., Kheyrollah Pour, H. and Booij, M.J., 2021. Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. Journal of Hydrology, 598, 126370.

[78] Marhaento, H., Booij, M.J. and Ahmed, N., 2021. Quantifying relative contribution of land use change and climate change to streamflow alteration in the Bengawan Solo River, Indonesia. Hydrological Sciences Journal, 66, 1059-1068.

[77] Xuan, W., Xu, Y.P., Fu, Q., Booij, M.J., Zhang, X. and Pan, S., 2021. Hydrological responses to climate change in Yarlung Zangbo River basin, Southwest China. Journal of Hydrology, 597, 125761.

[76] Khan, T., Nouri, H., Booij, M.J., Hoekstra, A.Y., Khan, H., Ullah, I., 2021. Water footprint, blue water scarcity, and economic water productivity of irrigated crops in Peshawar basin, Pakistan. Water, 13, 1249.

[75] Hajihosseini, M., Hajihosseini, H., Morid, S., Delavar, M. and Booij, M.J., 2020. Impacts of land use changes and climate variability on transboundary Hirmand River using SWAT. Journal of Water and Climate Change, 11, 1695-1711.

[74] Gao, C., Booij, M.J. and Xu, Y.P., 2020. Development and hydrometeorological evaluation of a new stochastic daily rainfall model: Coupling Markov chain with rainfall event model. Journal of Hydrology, 589, 125337.

[73] Abedi, M., Shafizadeh-Moghadam, H., Morid, S., Booij, M.J. and Delavar, M., 2020. Evaluation of ECMWF mid-range ensemble forecasts of precipitation for the Karun River basin. Theoretical and Applied Climatology, 141, 61-70.

[72] Gao, C., Booij, M.J. and Xu, Y.P., 2020. Assessment of extreme flows and uncertainty under climate change: disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability. Hydrology and Earth System Sciences, 24, 3251-3269.

[71] Ahmed, N., Wang, G., Booij, M.J., Oluwafemi, A., Zia-ur-Rehman Hashmi, M., Ali, S. and Munir, S., 2020. Climatic variability and periodicity for upstream sub-basins of the Yangtze River, China. Water, 12, 842.

[70] Gao, C., Booij, M.J. and Xu, Y.P., 2020. Impacts of climate change on characteristics of daily-scale rainfall events based on nine selected GCMs under four CMIP5 RCP scenarios in Qu River basin, east China. International Journal of Climatology, 40, 887-907.

[69] Marhaento, H., Booij, M.J., Rientjes, T.H.M. and Hoekstra, A.Y., 2019. Sensitivity of streamflow characteristics to different spatial land-use configurations in tropical catchment. ASCE Journal of Water Resources Planning and Management, 145, 04019054.

[68] Demirel, M.C., Özen, A., Orta, S., Toker, E., Demir, H.K., Ekmekcioglu, Ö., Taysi, H., Eruçar, S., Sag, A.B., Sarı, Ö., Tuncer, E., Hancı, H., Özcan, T.I., Erdem, H., Kosucu, M.M., Basakın, E.E., Ahmed, K., Anwar, A., Avcuoglu, M.B., Vanlı, Ö., Stisen, S. and Booij, M.J., 2019. Additional value of using satellite-based soil moisture and two sources of groundwater data for hydrological model calibration. Water, 11, 2083.

[67] Booij, M.J., Schipper, T.C. and Marhaento, H., 2019. Attributing changes in streamflow to land use and climate change for 472 catchments in Australia and the United States. Water, 11, 1059.

[66] Schyns, J.F., Hoekstra, A.Y., Hogeboom H.J. and Booij, M.J., 2019. Reply to Van Noordwijk and Ellison - Moisture recycling: Key to assess hydrological impacts of land cover changes, but not to quantify water allocation to competing demands. Proceedings of the National Academy of Sciences, 116, 8104.

[65] Nikzad Tehrani, E., Sahour, H. and Booij, M.J., 2019. Trend analysis of hydro-climatic variables in the north of Iran. Theoretical and Applied Climatology, 136, 85-97.

[64] Schyns, J.F., Hoekstra, A.Y., Booij, M.J., Hogeboom H.J. and Mekonnen, M.M., 2019. Limits to the world’s green water resources for food, feed, fibre, timber and bio-energy. Proceedings of the National Academy of Sciences, 116, 4893–4898.

[63] Tongal, H. and Booij, M.J., 2018. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266-282.

[62] Marhaento, H., Booij, M.J. and Hoekstra, A.Y., 2018. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal, 63, 1368-1385.

[61] Van den Heuvel, D.B, Troch, P.A., Booij, M.J., Niu, G.Y., Volkmann, T.H.M. and Pangle, L.A., 2018. Effects of differential hillslope‐scale water retention characteristics on rainfall–runoff response at the Landscape Evolution Observatory. Hydrological Processes, 32, 2118–2127.

[60] Wester, S.J., Grimson, R., Minotti, P.G., Booij, M.J. and Brugnach, M., 2018. Hydrodynamic modelling of a tidal delta wetland using an enhanced quasi-2D model. Journal of Hydrology, 559, 315-326.

[59] Gholami, V., Booij, M.J., Nikzad Tehrani, E. and Hadian, M.A., 2018. Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. Catena, 163, 210-218.

[58] Benninga, H.J.F., Booij, M.J., Romanowicz, R.J. and Rientjes, T.H.M., 2017. Performance of ensemble streamflow forecasts under varied hydrometeorological conditions. Hydrology and Earth System Sciences, 21, 5273-5291.

[57] Schyns, J.F., Booij, M.J. and Hoekstra, A.Y., 2017. The water footprint of wood for lumber, pulp, paper, fuel and firewood. Advances in Water Resources, 107, 490–501.

[56] Marhaento, H., Booij, M.J. and Hoekstra, A.Y., 2017. Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia. Hydrology Research, 48, 1143-1155.

[55] Rustanto, A., Booij, M.J., Wösten, H. and Hoekstra, A.Y., 2017. Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: case study in Bengawan Solo, Indonesia. Journal of Hydrology and Hydromechanics, 65, 307–320.

[54] Marhaento, H., Booij, M.J., Rientjes, T.H.M. and Hoekstra, A.Y., 2017. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes, 31, 2029-2040.

[53] Brouwer, T., Eilander, D., Van Loenen, A., Booij, M.J., Wijnberg, K.M., Verkade, J.S. and Wagemaker, J., 2017. Probabilistic flood extent estimates from social media flood observations. Natural Hazards and Earth System Sciences, 17, 735-747.

[52] Tongal, H. and Booij, M.J., 2017. Quantification of parametric uncertainty of ANN models with GLUE method for different streamflow dynamics. Stochastic Environmental Research and Risk Assessment, 31, 993-1010.

[51] Hajihosseini, H., Hajihosseini, M., Morid, S., Delavar, M. and Booij, M.J., 2016. Hydrological assessment of the 1973 treaty on the transboundary Helmand River, using the SWAT model and a global climate database. Water Resources Management, 30, 4681–4694.

[50] Tongal, H. and Booij, M.J., 2016. A comparison of nonlinear stochastic self-exciting threshold autoregressive and chaotic k-nearest neighbour models in daily streamflow forecasting. Water Resources Management, 30, 1515-1531.

[49] Zheng, D., Van der Velde, R., Su, Z., Wen, J., Wang, X., Booij, M.J., Hoekstra, A.Y., Lv, S., Zhang, Y. and Ek, M.B., 2016. Impacts of Noah model physics on catchment-scale runoff simulations. Journal of Geophysical Research: Atmospheres, 121, 807–832.

[48] Vonk, E., Xu, Y.P., Booij, M.J. and Augustijn, D.C.M., 2016. Quantifying the robustness of optimal reservoir operation for the Xinanjiang-Fuchunjiang reservoir cascade. Water Science & Technology: Water Supply, 16, 79-86.

[47] Tian, Y., Xu, Y.P., Booij, M.J. and Cao, L., 2016. Impact assessment of multiple uncertainty sources on high flows under climate change. Hydrology Research, 47, 61-74.

[46] Zheng, D., Van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M.J., Hoekstra, A.Y. and Chen, Y., 2015. Augmentations to the Noah model physics for application to the Yellow River source area. Part II: Turbulent heat fluxes and soil heat transport. Journal of Hydrometeorology, 16, 2677-2694.

[45] Zheng, D., Van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M.J., Hoekstra, A.Y. and Chen, Y., 2015. Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow. Journal of Hydrometeorology, 16, 2659-2676.

[44] Schyns, J.F., Hoekstra, A.Y. and Booij, M.J., 2015. Review and classification of indicators of green water availability and scarcity. Hydrology and Earth System Sciences , 19, 4581–4608.

[43] Zhang, X., Booij, M.J. and Xu, Y.P., 2015. Improved simulation of peak flows under climate change: post-processing or composite objective calibration? Journal of Hydrometeorology, 16, 2187-2208.

[42] Osuch, M., Romanowicz, R.J. and Booij, M.J., 2015. The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics. Hydrological Sciences Journal, 60, 1299-1316.

[41] Hogeboom, R.H.J., Van Oel, P.R., Krol, M.S. and Booij, M.J., 2015. Modelling the influence of groundwater abstractions on the water level of Lake Naivasha, Kenya under data-scarce conditions. Water Resources Management, 29, 4447-4463.

[40] Zheng, D., Van der Velde, R., Su, Z., Wen, J., Booij, M.J., Hoekstra, A.Y. and Wang, X., 2015. Under‐canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah‐MP. Water Resources Research, 51, 5735–5755.

[39] Tian, Y., Xu, Y.P., Booij, M.J. and Wang, G., 2015. Uncertainty in future high flows in Qiantang River Basin, China. Journal of Hydrometeorology, 16, 363-380.

[38] Demirel, M.C., Booij, M.J. and Hoekstra, A.Y., 2015. The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models . Hydrology and Earth System Sciences, 19, 275-291.

[37] Zheng, D., Van der Velde, R., Su, Z., Booij, M.J., Hoekstra, A.Y. and Wen, J., 2014. Assessment of roughness length schemes implemented within the Noah land surface model for high altitude regions. Journal of Hydrometeorology, 15, 921-937.

[36] Vonk, E., Xu, Y.P., Booij, M.J., Zhang, X. and Augustijn, D.C.M., 2014. Adapting multireservoir operation to shifting patterns of water supply and demand . Water Resources Management, 28, 625-643.

[35] Tian, Y., Booij, M.J. and Xu, Y.-P., 2014. Uncertainty in high and low flows due to model structure and parameter errors. Stochastic Environmental Research and Risk Assessment, 28, 319-332.

[34] Warmink, J.J., Straatsma, M.W., Huthoff, F., Booij, M.J. and Hulscher, S.J.M.H., 2013. Uncertainty of design water levels due to combined bed form and vegetation roughness in the Dutch River Waal. Journal of Flood Risk Management, 6, 302–318.

[33] Rientjes, T.H.M., Muthuwatta, L.P., Bos, M.G., Booij, M.J. and Bhatti, H.A., 2013. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration. Journal of Hydrology, 505, 276-290.

[32] Demirel, M.C., Booij, M.J. and Hoekstra, A.Y., 2013. Impacts of climate change on the seasonality of low flows in 134 catchments in the River Rhine basin using an ensemble of bias-corrected regional climate simulations. Hydrology and Earth System Sciences, 17, 4241-4257.

[31] Van Esse, W.R., Perrin, C., Booij, M.J., Augustijn, D.C.M., Fenicia, F., Kavetski, D. and Lobligeois, F., 2013. The influence of conceptual model structure on model performance: a comparative study for 237 French catchments. Hydrology and Earth System Sciences, 17, 4227-4239.

[30] Demirel, M.C., Booij, M.J. and Hoekstra, A.Y., 2013. Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times. Hydrological Processes, 27, 2742-2758.

[29] Demirel, M.C., Booij, M.J. and Hoekstra, A.Y., 2013. Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models. Water Resources Research, 49, 4035-4053.

[28] Van den Tillaart, S.P.M., Booij, M.J. and Krol, M.S., 2013. Impact of uncertainties in discharge determination on the parameter estimation and performance of a hydrological model. Hydrology Research, 44, 454-466.

[27] Warmink, J.J., Booij, M.J., Van der Klis, H. and Hulscher, S.J.M.H., 2013. Quantification of uncertainty in design water levels due to uncertain bed form roughness in the Dutch river Waal . Hydrological Processes, 27, 1646-1663.

[26] Tongal, H., Demirel, M.C. and Booij, M.J., 2013. Seasonality of low flows and dominant processes in the Rhine River. Stochastic Environmental Research and Risk Assessment, 27, 489-503.

[25] Tian, Y, Xu, Y.-P., Booij, M.J., Lin, S., Zhang, Q. and Lou, Z., 2012. Detection of trends in precipitation extremes in Zhejiang, east China. Theoretical and Applied Climatology, 107, 201–210.

[24] Demirel, M.C., Booij, M.J. and Kahya, E., 2012. Validation of an ANN flow prediction model using a multistation cluster analysis. ASCE Journal of Hydrologic Engineering, 17, 262-271.

[23] Booij, M.J., Tollenaar, D., Van Beek, E. and Kwadijk, J.C.J., 2011. Simulating impacts of climate change on river discharges in the Nile basin. Physics and Chemistry of the Earth, 36, 696-709.

[22] Romanowicz, R.J. and Booij, M.J., 2011. Editorial – Impact of land use and water management on hydrological processes under varying climatic conditions. Physics and Chemistry of the Earth, 36, 613-614.

[21] Warmink, J.J., Van der Klis, H., Booij, M.J. and Hulscher, S.J.M.H., 2011. Identification and quantification of uncertainties in a hydrodynamic river model using expert opinions. Water Resources Management, 25, 601–622.

[20] Booij, M.J. and De Wit, M.J.M., 2010. Extreme value statistics for annual minimum and trough-under-threshold precipitation at different spatio-temporal scales. Hydrological Sciences Journal, 55, 1289-1301.

[19] Warmink, J.J., Janssen, J.A.E.B., Booij, M.J. and Krol, M.S., 2010. Identification and classification of uncertainties in the application of environmental models. Environmental Modelling and Software, 25, 1518-1527.

[18] Deckers, D.L.E.H., Booij, M.J., Rientjes, T.H.M. and Krol, M.S., 2010. Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall-runoff model. Water Resources Management, 24, 3961–3985.

[17] Booij, M.J. and Krol, M.S., 2010. Balance between calibration objectives in a conceptual hydrological model, Hydrological Sciences Journal, 55, 1017-1032.

[16] Bulsink, F., Hoekstra, A.Y. and Booij, M.J., 2010. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrology and Earth System Sciences, 14, 119–128.

[15] Xu, Y.-P., Booij, M.J. and Tong, Y.-B., 2010. Uncertainty analysis in statistical modeling of extreme hydrological events. Stochastic Environmental Research and Risk Assessment, 24, 567–578.

[14] Akhtar, M., Ahmad, N. and Booij, M.J., 2009. Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region. Hydrology and Earth System Sciences , 13, 1075-1089.

[13] De Kok, J.L. and Booij, M.J., 2009. Deterministic-statistical model coupling in a DSS for river-basin management. Environmental Modeling and Assessment, 14, 595-606.

[12] Xu, Y.P., Holzhauer, H., Booij M.J. and Sun H.Y., 2008. A two-step approach to investigate the effect of rating curve uncertainty in the Elbe decision support system. Journal of Zhejiang University Science A, 9, 1229-1238.

[11] De Hamer, W., Love, D., Owen, R., Booij, M.J. and Hoekstra, A.Y., 2008. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe. Physics and Chemistry of the Earth, 33, 633-639.

[10] Akhtar, M., Ahmad, N. and Booij, M.J., 2008. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355, 148-163.

[9] Xu, Y.-P., Booij, M.J. and Mynett, A.E., 2007. An appropriateness framework for the Dutch Meuse decision support system. Environmental Modelling and Software, 22, 1667-1678.

[8] De Kort, I.A.T. and Booij, M.J., 2007. Decision making under uncertainty in a decision support system for the Red River. Environmental Modelling and Software, 22, 128-136.

[7] Dong, X., Dohmen-Janssen, C.M., Booij, M. and Hulscher, S., 2006. Effect of flow forecasting quality on benefits of reservoir operation - a case study for the Geheyan reservoir (China). Hydrology and Earth System Sciences Discussions, 3, 3771-3814.

[6] Dong, X., Dohmen-Janssen, C.M. and Booij, M.J., 2005. Appropriate spatial sampling of rainfall for flow simulation. Hydrological Sciences Journal, 50, 279-298.

[5] Booij, M.J., 2005. Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of Hydrology, 303, 176-198.

[4] Booij, M.J., 2003. Determination and integration of appropriate spatial scales for river basin modelling. Hydrological Processes, 17, 2581-2598.

[3] Booij, M.J., 2002. Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge. Hydrological Sciences Journal, 47, 307-320.

[2] Booij, M.J., 2002. Extreme daily precipitation in Western Europe with climate change at appropriate spatial scales. International Journal of Climatology, 22, 69-85.

[1] Booij, M., Leijnse, A., Haldorsen, S., Heim, M. and RueslĂ„tten, H., 1998. Subpermafrost groundwater modelling in Ny-Ålesund, Svalbard. Nordic Hydrology, 29, 385-396.

Research profiles

Current projects

Finished projects

Sustainable and efficient allocation of limited blue and green water resources

Effects of changes in land use and climate on water availability of a tropical catchment

Land use changes such as deforestation and conversion of agricultural lands influence the hydrology of catchments and hence water availability and demand. In Indonesia, deforestation and development of agricultural lands and palm oil plantations have resulted in land use changes at different scales.

Future flow projections and their impacts on reservoir operation

Climate change induced by the increase of greenhouse gases in the atmosphere will have significant effects on spatial and temporal patterns of hydrologically relevant variables. Consequently, climate change has a great impact on water management, for example, reservoir operation.

Exploring downstream water availability of Yellow River based on historic and projected runoff change in the source region area

In recent years, the source region of the Yellow River (SRYR) has been subject to a changing climate which affects various water balance components as illustrated by the drawn-down of groundwater levels, decreased runoff and reduction of wetland and permafrost areas.

Uncertainty in climate change impacts on extreme discharges of twinning river basins

Climate change induced by the increase of the emission of greenhouse gases will have significant effects on spatial and temporal patterns of hydrological relevant variables. Much work has been done on the impact of climate change on hydrological variables.

Flood security strategies for dike ring 6 - reducing system risk

Dike ring 6 Groningen-Friesland is the largest dike ring in the Netherlands. Flooding from the sea is expected to cause 1,000 to 100,000 casualties and an economic damage between 10 and 100 billion euro (RIVM, 2004).

PUB: Predictions in Ungauged Basins

Predictions in Ungauged Basins (PUB) is an initiative that emerged out of discussions between IAHS (International Association of Hydrological Sciences) members on internet and during a series of IAHS sponsored meetings in Maastricht (18-27 July, 2001), Kofu (28-29 March, 2002) and Brasilia (20-22 November, 2002) about the need to reduce the predictive uncertainty in hydrological science and practice.

Appropriate modelling in decision support systems for river basin management

The use of models is essential for model-based decision support systems in river basin management. Often very complicated models are used, which are sometimes more than the needs of decision support systems.

Appropriate flow forecasting for reservoir operation

Appropriate modelling seeks for a complexity-accuracy-uncertainty consistent system that is as simple as possible, but compatible for its task. Appropriate flood forecasting methods have a sound practical background, in this research, they are oriented to satisfy the requirements of reservoir operation.

FLOCODS: FLOod COntrol Decision Support

Decision Support System for ecosystem upgrading and flood control of a sustainable development in the Red River System (China, Vietnam).

Appropriate modelling of climate change impacts on river flooding

My PhD project dealt with the determination of the appropriate model complexity dependent on modelling objective and research area, and the assessment of the climate change impact on river flooding with the obtained, appropriate model.

Modelling the total water balance in Indonesia

Indonesia faces various severe problems with ‘environmental water’: flooding in the wet season and shortage in the dry season. Effects of climate change are predicted to make the situation worse.

Seasonal and long-term prediction of low flows in the Rhine basin

Low flows in rivers may result in several types of problems to society, e.g. lack of water for drinking water supply, irrigation, industrial use and power production, hindrance to navigation and deterioration of water quality.

Uncertain hydraulic roughness in river models

Hydraulic–morphological river models are applied to design measures for purposes such as safety against flooding, navigation and ecological rehabilitation. Much effort has been put into the development of sophisticated numerical model system.

Address

University of Twente

Horst Complex (building no. 20), room W210
De Horst 2
7522 LW Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard