My research focuses on natural hazard modeling, particularly landslides and wildfires.y.

Expertise

  • Earth and Planetary Sciences

    • Landslide
    • Model
    • Datum
    • Italy
    • Prediction
    • Modeling
    • Time
    • Area

Organisations

Publications

2024

Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds (2024)Geoscience Frontiers, 15(5). Article 101822. Steger, S., Moreno, M., Crespi, A., Luigi Gariano, S., Brunetti, M. T., Melillo, M., Peruccacci, S., Marra, F., de Vugt, L., Zieher, T., Rutzinger, M., Mair, V. & Pittore, M.https://doi.org/10.1016/j.gsf.2024.101822Spatial transferability of the physically based model TRIGRS using parameter ensembles (2024)Earth surface processes and landforms, 49(4), 1330-1347. de Vugt, L., Zieher, T., Schneider‐Muntau, B., Moreno, M., Steger, S. & Rutzinger, M.https://doi.org/10.1002/esp.5770Application of beta regression for the prediction of landslide areal density in South Tyrol, Italy  (2024)[Contribution to conference › Abstract] EGU General Assembly 2024. Moreno, M., Opitz, T., Steger, S., Westen, C. v. & Lombardo, L.https://doi.org/10.5194/egusphere-egu24-17785Incorporating climate change projections into operational debris flow hazard mapping: Initial insights from the Toverino River Basin in South Tyrol (Eastern Italian Alps). (2024)[Contribution to conference › Abstract] EGU General Assembly 2024. Bozzoli, L., Crespi, A., Steger, S. & Moreno, M.https://doi.org/10.5194/egusphere-egu24-19520Development of a data-driven space-time model to predict precipitation-induced geomorphic impact events at the Alpine Scale (2024)[Contribution to conference › Abstract] EGU General Assembly 2024. Spiekermann, R., Lehner, S., Steger, S., Moreno, M., Enigl, K., Imgrüth, D., Schlögl, M. & Pistotnik, G.https://doi.org/10.5194/egusphere-egu24-10552Space-time data-driven modeling of precipitation-induced shallow landslides in South Tyrol, Italy (2024)Science of the total environment, 912(169166), 1-17. Article 169166. Moreno, M., Lombardo, L., Crespi, A., Zellner, P. J., Mair, V., Pittore, M., van Westen, C. J. & Steger, S.https://doi.org/10.1016/j.scitotenv.2023.169166

2023

Towards multi-hazard, border-independent exposure analysis for operational climate and disaster risk preparedness applications (2023)[Contribution to conference › Abstract] SISC 11th Annual Conference 2023. Campalani, P., Renner, K., Crespi, A., Steger, S., Moreno, M. & Pittore, M.Developing a spatiotemporal model to integrate landslide susceptibility and critical rainfall conditions. A practical model applied to Rio de Janeiro municipality (2023)[Contribution to conference › Abstract] 6th World Landslide Forum, WLF 2023. Lima, P., Moreno, M., Steger, S., Camarinha, P., Teixeira, C. L., Mandarino, F. & Glade, T.Exploring functional regression for dynamic modeling of shallow landslides in South Tyrol, Italy (2023)[Contribution to conference › Abstract] 6th World Landslide Forum, WLF 2023. Moreno, M., Opitz, T., Steger, S., Lombardo, L., Crespi, A., Pittore, M. & van, W. C.Space-time data-driven modeling of precipitation-induced shallow landslides in South Tyrol, Italy (2023)[Working paper › Preprint]. Earth ArXiv. Moreno, M., Lombardo, L., Crespi, A., Zellner, P., Mair, V., Pittore, M., van Westen, C. & Steger, S.https://doi.org/10.31223/X59M3J

Research profiles

PROSLIDE: Integration of static and dynamic landslide controls at multiple-scales using data-driven and physically-based methods – exploring new opportunities for the PRediction of shall Ow land SLIDEs

The overarching aim of PROSLIDE is to exploit the potential of innovative input data, available ground truth data and novel modelling designs (i.e. data-driven and physically-based) at different scales to improve the predictability of where and when landslides will occur. 

Scan the QR code or
Download vCard