Overview Research Projects Contact
My research focuses on natural hazard modeling, particularly landslides and wildfires.
Expertise Earth and Planetary Sciences Landslide Model Datum Italy Prediction Modeling Time Area Organisations Publications A dynamic landslide model for early warnings in Colombia's roads (2025) [Contribution to conference › Abstract] EGU General Assembly 2025 . Urueña Ramirez, D. A., Moreno, M. , Lombardo, L., Gómez, D., Vega, J. & van Westen, C. https://doi.org/10.5194/egusphere-egu25-20285 Space-time data-driven modeling of wildfire initiation in the mountainous region of Trentino-Alto Adige, Italy (2025) [Contribution to conference › Abstract] EGU General Assembly 2025 . Moreno, M. , Steger, S., Bozzoli, L., Terzi, S., Trucchia, A., van Westen, C. & Lombardo, L. https://doi.org/10.5194/egusphere-egu25-17023 Data-driven modeling of mass movement damage potential across the Alpine Space: A step toward impact-based early warning (2025) [Contribution to conference › Abstract] EGU General Assembly 2025 . Steger, S., Spiekermann, R., Lehner, S., Enigl, K., Moreno, M. , Crespi, A. & Schlögl, M. https://doi.org/10.5194/egusphere-egu25-9819 Software. Reproducible results. Modeling the area of co-seismic landslides via data-driven models: The Kaikōura example (2025) [Dataset Types › Dataset]. Zenodo. Moreno, M. https://doi.org/10.5281/zenodo.15028434 Comprehensive multi-hazard risk assessment in data-scarce regions: A study focused on Burundi (2025) [Working paper › Preprint]. European Geosciences Union (E-pub ahead of print/First online). Delves, J., Renner, K., Campalani, P., Piñón, J., Schneiderbauer, S., Steger, S., Moreno, M. , Oterino, M. B. B., Perez, E. & Pittore, M. https://doi.org/10.5194/egusphere-2024-3445 Functional regression for space-time prediction of precipitation-induced shallow landslides in South Tyrol, Italy (2024) [Working paper › Preprint]. Earth ArXiv. Moreno, M. , Lombardo, L., Steger, S., de Vugt, L., Zieher, T., Crespi, A., Marra, F., van Westen, C. & Opitz, T. https://doi.org/10.31223/X5VB0M Software. Reproducible results. Functional regression for space-time prediction of precipitation-induced shallow landslides in South Tyrol, Italy (2024) [Dataset Types › Dataset]. Zenodo. Moreno, M. https://doi.org/10.5281/zenodo.15033257 A benchmark dataset and workflow for landslide susceptibility zonation (2024) Earth-science reviews, 258 . Article 104927. Alvioli, M., Loche, M., Jacobs, L., Grohmann, C. H., Abraham, M. T., Gupta, K., Satyam, N., Scaringi, G., Bornaetxea, T., Rossi, M., Marchesini, I., Lombardo, L., Moreno, M. , Steger, S., Camera, C. A. S., Bajni, G., Samodra, G., Wahyudi, E. E., Susyanto, N., … Rivera-Rivera, J.https://doi.org/10.1016/j.earscirev.2024.104927 Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds (2024) Geoscience Frontiers, 15 (5). Article 101822. Steger, S., Moreno, M. , Crespi, A., Luigi Gariano, S., Brunetti, M. T., Melillo, M., Peruccacci, S., Marra, F., de Vugt, L., Zieher, T., Rutzinger, M., Mair, V. & Pittore, M.https://doi.org/10.1016/j.gsf.2024.101822 Spatial transferability of the physically based model TRIGRS using parameter ensembles (2024) Earth surface processes and landforms, 49 (4), 1330-1347. de Vugt, L., Zieher, T., Schneider‐Muntau, B., Moreno, M. , Steger, S. & Rutzinger, M.https://doi.org/10.1002/esp.5770 Research profiles PROSLIDE: Integration of static and dynamic landslide controls at multiple-scales using data-driven and physically-based methods – exploring new opportunities for the PR ediction of shallO w land SLIDE s. The overarching aim of PROSLIDE is to exploit the potential of innovative input data, available ground truth data and novel modelling designs (i.e. data-driven and physically-based) at different scales to improve the predictability of where and when landslides will occur.
EO4MULTIHA: E arth O bservation for Multi -Ha zard Risk Assessments The EO4MULTIHA is a European Space Agency funded project aiming to explore the EO technology potential to advance the scientific understanding of high impact multi-hazard events to better identify, characterise and assess their associated risk, vulnerability and impacts on society and ecosystems.