dr. N. Strisciuglio (Nicola)

Assistant Professor


Engineering & Materials Science
Acoustic Waves
Blood Vessels
Computer Vision
Convolutional Neural Networks


Riego Del Castillo, V., Sánchez-González, L., Campazas-Vega, A. , & Strisciuglio, N. (2022). Vision-Based Module for Herding with a Sheepdog Robot. Sensors (Basel, Switzerland), 22(14), [5321]. https://doi.org/10.3390/s22145321
Pandey, V. , Brune, C. , & Strisciuglio, N. (2022). Self-supervised Learning Through Colorization for Microscopy Images. In S. Sclaroff, C. Distante, M. Leo, G. M. Farinella, & F. Tombari (Eds.), Image Analysis and Processing – ICIAP 2022: 21st International Conference, Lecce, Italy, May 23-27, 2022. Proceedings, Part II (pp. 621-632). (Lecture Notes in Computer Science; Vol. 13232). Springer. https://doi.org/10.1007/978-3-031-06430-2_52
Greco, A. , Strisciuglio, N., Vento, M. , & Vigilante, V. (2022). Benchmarking deep networks for facial emotion recognition in the wild. Multimedia tools and applications. https://doi.org/10.1007/s11042-022-12790-7
Brandt, R. , Strisciuglio, N., & Petkov, N. (2021). MTStereo 2.0: Accurate Stereo Depth Estimation via Max-Tree Matching. In N. Tsapatsoulis, A. Panayides, T. Theocharides, A. Lanitis, A. Lanitis, C. Pattichis, C. Pattichis, & M. Vento (Eds.), Computer Analysis of Images and Patterns - 19th International Conference, CAIP 2021, Proceedings (pp. 110-119). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13052 LNCS). Springer. https://doi.org/10.1007/978-3-030-89128-2_11
Strisciuglio, N., & Petkov, N. (2021). Brain-Inspired Algorithms for Processing of Visual Data. In K. Amunts, L. Grandinetti, T. Lippert, & N. Petkov (Eds.), Brain-Inspired Computing - 4th International Workshop, BrainComp 2019, Revised Selected Papers (pp. 105-115). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12339 LNCS). Springer. https://doi.org/10.1007/978-3-030-82427-3_8
Riego, V., Sánchez-González, L., Fernández-Robles, L., Gutiérrez-Fernández, A. , & Strisciuglio, N. (2021). Burr detection and classification using RUSTICO and image processing. Journal of computational science, 56, [101485]. https://doi.org/10.1016/j.jocs.2021.101485
Mehra, A. , Spreeuwers, L. , & Strisciuglio, N. (2021). Deepfake detection using capsule networks and long short-term memory networks. In G. M. Farinella, P. Radeva, J. Braz, & K. Bouatouch (Eds.), Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP (pp. 407-414). SCITEPRESS. https://doi.org/10.5220/0010289004070414
Melotti, D., Heimbach, K., Rodríguez-Sánchez, A. , Strisciuglio, N., & Azzopardi, G. (2020). A robust contour detection operator with combined push-pull inhibition and surround suppression. Information sciences, 524, 229-240. https://doi.org/10.1016/j.ins.2020.03.026
Brandt, R. , Strisciuglio, N., Petkov, N., & Wilkinson, M. H. F. (2020). Efficient binocular stereo correspondence matching with 1-D Max-Trees. Pattern recognition letters, 135, 402-408. https://doi.org/10.1016/j.patrec.2020.02.019
Strisciuglio, N., Lopez-Antequera, M., & Petkov, N. (2020). Enhanced Robustness of Convolutional Networks with a Push-Pull Inhibition Layer. Neural Computing and Applications, 32(24), 17957-17971. https://doi.org/10.1007/s00521-020-04751-8
Ramachandran, S. , Strisciuglio, N., Vinekar, A., John, R., & Azzopardi, G. (2020). U-COSFIRE filters for vessel tortuosity quantification with application to automated diagnosis of retinopathy of prematurity. Neural Computing and Applications, 32(16), 12453-12468. https://doi.org/10.1007/s00521-019-04697-6
Leyva-Vallina, M. , Strisciuglio, N., Lopez Antequera, M., Tylecek, R., Blaich, M., & Petkov, N. (2019). TB-places: A data set for visual place recognition in garden environments. IEEE Access, 7, 52277-52287. [8698240]. https://doi.org/10.1109/ACCESS.2019.2910150

UT Research Information System

Google Scholar Link

Affiliated Study Programmes


Courses Academic Year  2022/2023

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.

Courses Academic Year  2021/2022

Contact Details

Visiting Address

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling (building no. 11), room 4122
Hallenweg 19
7522NH  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling  4122
P.O. Box 217
7500 AE Enschede
The Netherlands

Social Media