Raian V. Maretto is PhD in Applied Computing (2020) and MSc in Remote Sensing (2011) by the Instituto Nacional de Pesquisas Espaciais (Brazilian National Institute for Space Research, INPE), and Bachelor's in Computer Science (2008) by the Universidade Federal de Ouro Preto (Federal University of Ouro Preto, UFOP). With the main expertise in the application of Deep Learning, Machine Learning, and Data Mining methods to the analysis of geospatial data. He worked as a consultant and research assistant at INPE, in the context of the FIP (Forest Investment Program) Cerrado and the MSA (Monitoring the Amazon through Satellite Imagery) projects, developing methods based on Deep Learning to automatically map deforested areas, agriculture and vegetation types in the Brazilian Cerrado and Amazon biomes. He has more than 10 years of experience in the development of Geographic Information Systems (GIS) and Remote Sensing image processing algorithms and software, participating on large software development teams following agile software development methods and working with languages like C++, Python, Lua, R, and Java. He also has participated in the development of the following systems: TerraLib library, TerraView, TerraME, GeoDMA, and recently the DeepGeo package. Main research interests are on Remote Sensing data analysis, integration of images from different sensors and natures, computer vision, machine learning, data mining, and pattern recognition.

Expertise

  • Earth and Planetary Sciences

    • Cerrado
    • Cartography
    • Learning
    • Biome
    • Time Series
    • Map
    • Model
  • Computer Science

    • Models

Organisations

I am PhD in Applied Computing (2020) and MSc in Remote Sensing (2011) by the Instituto Nacional de Pesquisas Espaciais (Brazilian National Institute for Space Research, INPE), and a Bachelor's in Computer Science (2008) by the Universidade Federal de Ouro Preto (Federal University of Ouro Preto, UFOP). With the main expertise in the application of Deep Learning, Machine Learning, and Data Mining methods to the analysis of geospatial data. He worked as a consultant and research assistant at INPE, in the context of the FIP (Forest Investment Program) Cerrado and the MSA (Monitoring the Amazon through Satellite Imagery) projects, developing methods based on Deep Learning to automatically map deforested areas, agriculture, and vegetation types in the Brazilian Cerrado and Amazon biomes. He has more than 10 years of experience in the development of Geographic Information Systems (GIS) and Remote Sensing image processing algorithms and software, participating on large software development teams following agile software development methods and working with languages like C++, Python, Lua, R, and Java. He also has participated in the development of the following systems: TerraLib library, TerraView, TerraME, GeoDMA, and recently the DeepGeo package. My main research interests are on Remote Sensing data analysis, integration of images from different sensors and natures, computer vision, machine learning, data mining, and pattern recognition.

Publications

2024

Mapping the Brazilian savanna’s natural vegetation: A SAR-optical uncertainty-aware deep learning approach (2024)ISPRS journal of photogrammetry and remote sensing, 218, 405-421 (E-pub ahead of print/First online). Filho, P. S., Persello, C., Maretto, R. & Machado, R.https://doi.org/10.1016/j.isprsjprs.2024.09.019Gathering, structuring, and analyzing the space-related educational programs and their courses at the Bachelor, Master, Phd, and continuous education levels. (2024)In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (pp. 3732-3735) (International Geoscience and Remote Sensing Symposium (IGARSS)). IEEE. Belgiu, M., Al Asmar, Y., Vargas Maretto, R., La, H., Ronzhin, S., Thiemann, H., Kerkezian, S., Kolehmainen, M., Bodenan, J. D., Stupar, D., Peter, N., Petrakis, G., Maddock, C. & Detsis, E.https://doi.org/10.1109/IGARSS53475.2024.10640886Remote sensing vegetation Indices-Driven models for sugarcane evapotranspiration estimation in the semiarid Ethiopian Rift Valley (2024)ISPRS journal of photogrammetry and remote sensing, 215, 136-156. Woldemariam, G. W., Awoke, B. G. & Maretto, R. V.https://doi.org/10.1016/j.isprsjprs.2024.07.004Feature-guided deep learning model for mapping deprived areas (2024)In 2024 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing, MIGARS 2024. IEEE. Filho, P. S., Tareke, B., Persello, C., Kuffer, M., Maretto, R., Abascal, A., Wang, J. & MacHado, R.https://doi.org/10.1109/MIGARS61408.2024.10544988User and data-centric artificial intelligence for mapping urban deprivation in multiple cities across the globe (2024)In IGARSS 2024: 2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 1553-1557) (International Geoscience and Remote Sensing Symposium (IGARSS); Vol. 2024). IEEE. Tareke, B., Filho, P. S., Persello, C., Kuffer, M., Maretto, R., Wang, J., Abascal, A., Pillai, P., Singh, B., D’Attoli, J. M., Kabaria, C., Pedrassoli, J., Brito, P., Elias, P., Atenógenes, E. & Santiago, A. R.https://doi.org/10.1109/IGARSS53475.2024.10640428

2023

Deep Learning and Cloudy Optical Time Series: A Case of Study with LSTM to Map LULC in Pantanal (2023)In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (pp. 7179-7182) (International Geoscience and Remote Sensing Symposium (IGARSS); Vol. 2023-July). IEEE. Matosak, B. M., Fonseca, L. M. G. & Maretto, R. V.https://doi.org/10.1109/IGARSS52108.2023.10282993Hypersaline Tidal Flats Detection Using Deep Learning Over 37 Years of Landsat Data (2023)In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (pp. 3337-3340) (International Geoscience and Remote Sensing Symposium (IGARSS); Vol. 2023-July). IEEE. Pinheiro, M. L., Cortinhas, L., Diniz, C., Maretto, R. V. & Grellert, M.https://doi.org/10.1109/IGARSS52108.2023.10282540Investigating Sar-Optical Deep Learning Data Fusion to Map the Brazilian Cerrado Vegetation with Sentinel Data (2023)In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (pp. 1365-1368) (International Geoscience and Remote Sensing Symposium (IGARSS); Vol. 2023). IEEE. Filho, P. S., Persello, C., Maretto, R. V. & MacHado, R.https://doi.org/10.1109/IGARSS52108.2023.10282190Task Agnostic Cost Prediction Module for Semantic Labeling in Active Learning (2023)In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (pp. 4990-4993) (International Geoscience and Remote Sensing Symposium (IGARSS); Vol. 2023-July). IEEE. Sastry, S., Jacobs, N., Belgiu, M. & Maretto, R. V.https://doi.org/10.1109/IGARSS52108.2023.10281434

2022

Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series (2022)Remote sensing, 14(1). Article 209. Matosak, B. M., Fonseca, L. M. G., Taquary, E. C., Maretto, R. V., Bendini, H. D. N. & Adami, M.https://doi.org/10.3390/rs14010209

Research profiles

Affiliated study programs

Courses academic year 2024/2025

Courses in the current academic year are added at the moment they are finalised in the Osiris system. Therefore it is possible that the list is not yet complete for the whole academic year.

Courses academic year 2023/2024

Address

University of Twente

Langezijds (building no. 19), room 1320
Hallenweg 8
7522 NH Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard