Expertise

  • Computer Science

    • Models
    • Prediction Model
    • Explainable Artificial Intelligence
    • Chain Rule
    • Preoperative Data
    • Machine Learning
  • Medicine and Dentistry

    • Hip Fracture
    • Surgical Mortality

Organisations

Publications

2024

Feature Importance to Explain Multimodal Prediction Models: a Clinical Use Case (2024)In Explainable Artificial Intelligence: Second World Conference, xAI 2024. Valletta, Malta, July 17-19, 2024. Proceedings, Part IV (pp. 84-101) (Communications in Computer and Information Science; Vol. 2156). Springer Nature. van de Beld, J.-J., Pathak, S., Geerdink, J., Hegeman, J. H. & Seifert, C.https://doi.org/10.1007/978-3-031-63803-9_5Prototype-Based Interpretable Breast Cancer Prediction Models: Analysis and Challenges (2024)In Explainable Artificial Intelligence - 2nd World Conference, xAI 2024, Proceedings (pp. 21-42) (Communications in Computer and Information Science; Vol. 2153 CCIS). Springer. Pathak, S., Schlötterer, J., Veltman, J., Geerdink, J., van Keulen, M. & Seifert, C.https://doi.org/10.1007/978-3-031-63787-2_2Feature importance to explain multimodal prediction models. A clinical use case (2024)[Working paper › Preprint]. ArXiv.org. van de Beld, J.-J., Pathak, S., Geerdink, J., Hegeman, J. H. & Seifert, C.Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges (2024)[Working paper › Preprint]. Pathak, S., Schlötterer, J., Veltman, J., Geerdink, J., Keulen, M. v. & Seifert, C.

2023

From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI (2023)ACM computing surveys, 55(13s). Article 295. Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M., Schmitt, Y., Schlötterer, J., Van Keulen, M. & Seifert, C.https://doi.org/10.1145/3583558Case-level Breast Cancer Prediction for Real Hospital Settings (2023)[Working paper › Preprint]. ArXiv.org. Pathak, S., Schlötterer, J., Geerdink, J., Veltman, J., van Keulen, M., Strisciuglio, N. & Seifert, C.https://doi.org/10.48550/arXiv.2310.12677Weakly Supervised Learning for Breast Cancer Prediction on Mammograms in Realistic Settings (2023)[Working paper › Preprint]. ArXiv.org. Pathak, S., Schlötterer, J., Geerdink, J., Vijlbrief, O. D., Keulen, M. v. & Seifert, C.Benchmarking eXplainable AI: A Survey on Available Toolkits and Open Challenges (2023)In Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 (pp. 6665-6673) (IJCAI International Joint Conference on Artificial Intelligence; Vol. 2023-August). International Joint Conferences on Artificial Intelligence. Le, P. Q., Nauta, M., Nguyen, V. B., Pathak, S., Schlötterer, J. & Seifert, C.

2022

Channel Contribution In Deep Learning Based Automatic Sleep Scoring – How Many Channels Do We Need? (2022)IEEE transactions on neural systems and rehabilitation engineering, 31, 494-505. Lu, C., Pathak, S., Englebienne, G. & Seifert, C.https://doi.org/10.1109/TNSRE.2022.3227040From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI (2022)[Working paper › Preprint]. ArXiv.org. Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M., Schmitt, Y., Schlötterer, J., van Keulen, M. & Seifert, C.https://doi.org/10.48550/arXiv.2201.08164

Research profiles

Address

University of Twente

Zilverling (building no. 11), room 4057
Hallenweg 19
7522 NH Enschede
Netherlands

Navigate to location

Organisations

Scan the QR code or
Download vCard