prof.dr.ing. W.B. Verwey (Willem)

Full Professor

About Me

Curriculum Vitae


  • 1979-1983: Ing. (BSc.) in Mechanical Engineering, HTS Hilversum
  • 1983-1988: Dipl. Psych. (BSc. And MSc.) in Experimental Psychology and Ergonomics (Universities of Utrecht, Leiden and Aachen-Germany)
  • 1994: PhD, Free University of Amsterdam, title of dissertation: Mechanisms of Skill in Sequential Motor Behavior, supervisor: Prof. Dr. A.F. Sanders
  • 2002: PD, Habilitation at the Westfälischen Wilhelms-Universität Münster. Thesis title: Behavioural Effects of Advanced Transport Telematics.

Work experience

  • 1987-1997: Researcher at the Traffic Behavior Department, TNO Soesterberg, NL
  • 1998-2002: Department head „Bewegungskoordination und Training“ at the Institut für Arbeitsphysiologie an der Universität Dortmund (IfADo - Germany)
  • 1998-2001: Guest lecturer, Psychonomics Department, University of Utrecht, NL
  • 2003-present: Full professor and department head at the Faculty of Behavioral Sciences (from February 2006 onward: Department of Cognitive Psychology and Ergonomics)
  • 2014-present: Adjunct-professor A&M University, College Station, TX, USA

External activities (current)

  • Coordinator NWO/ORA international reLoad project (4 partners, from USA, D, NL)
  • Associate editor ‘Frontiers of Cognition’
  • Member of the NWO program committee ‘Brain & Cognition’
  • Member of the Scientific Advisory Council of the Institut für Arbeitsphysiologie Dortmund (IfADo)
  • Member of the Advisory Council of the Artificial Intelligence Ba and Ma Programs, University of Groningen, NL
  • Member of the Scientific Committee of the Dutch Psychonomics Society Meeting
  • Member of the NWO-MaGW Veni funding committee

External activities (previous)

  • Visiting professor A&M University College Station Texas (2014)
  • Sabbatical leave: visiting professor A&M University College Station Texas (2013)
  • Chair Psychology Disciplinary Council, Faculty of Behavioral Sciences (2010-2013)
  • Member of the faculty of Behavioral Sciences management team (2010-2013)
  • Chair Dissertation committee Dutch Psychonomics Society (2011)
  • Member of the NWO ‘Cognition’ committee (2005-2010)
  • Member of the ‘Cognition’ advisory board of the Dutch Royal Academy of Sciences (KNAW) (2005-2010)
  • Consulting editor Journal of Motor Behavior (2005-2009)
  • Manager Behavioral Sciences laboratories (2003-2009)
  • Chair Psychology Examination board (2004-2010)
  • Chair of the organising committee of the European Workshop on Movement Science, in 2003 (Münster-Germany), 2005 (Vienna-Austria), 2007 (Amsterdam-the Netherlands)
  • Member of working group Rehabilitation research (ZonMW-NWO)
  • Visiting scholar at the Max Planck Institute for Cognitive and Brain Research, Leipzig, Germany (April-May 2007)
  • Visiting scholar at the Max Planck Institute for Cognitive and Brain Research, Leipzig, Germany (June-July 2005)
  • Visiting scholar at the Department of Health and Kinesiology of A&M University, College Station, Texas (Nov-Dec. 2002)
  • Research partner in 11 EU traffic research projects (1987-2002), focusing on Intelligent Traffic Systems, elderly, Drivers with Special Needs.


  • Playing the tenor saxophone in big band ‘Switch’
  • driving my motor bike (Yamaha diversion 900)
  • Field hockey (midfielder)


Practice (Psychology)
Motor Skills
Young Adult
Motor Cortex
Reaction Time

Ancillary Activities

  • de vereniging Human Factors NL
    adviseur bestuur
  • Human Factors NL
    member of the editorial board Human Factors NL
  • NWO
    Round Table NWO -Social Sciences & Humanities


My research interest concerns the development and neurophysiological foundation of perceptual-motor skills. Why it is that we can develop such skills? And – a related interest – how can these insights be used to improve future robots and improve human-machine interfaces and training simulators?


Foundations of motor skill learning

The basic question I address concerns why repeated execution of perceptual-motor tasks, like car driving and playing the piano, automates behavior and causes a decreasing need for attention. This ability to automate behavior is essential for human behavior. How would we otherwise be able to show intelligent behavior if we would continuously need to think about each individual movement we perform? Cognitive theories (based on behavioral research) assert that repeated execution of a task induces the development of task-specific representations in human memory called motor chunks. These representations link our perceptions and our actions, and involve primarily in spatial and motor codes. These representation are used by a cognitive and a motor processor (Verwey, 2001). Together with colleagues from the A&M University in Texas , I proposed a theory how the information processing system develops and uses such representations (Verwey, Shea, & Wright, 2015). These representations allow skilled musicians to play the piano while they are having a conversation with someone. Or, to prepare forthcoming movements while earlier ones are being executed.

My experiments usually involve participants practicing movement sequences, like keying sequences in the DSP task (Figure 1), and series of aimed movements in the Flexion-Extension (FE) task. We then look how measures of behavior and brain activity change in the course of practice. For our research, we typically use the Discrete Sequence Production (DSP) task that I developed some time ago (click here to download the EPrime script I used in Verwey, 2010).

Figure 1 One way to study sequential motor learning involves the discrete sequence production (DSP) task. In this task participants initially react to the presentation of two fixed series of 6 key-specific stimuli. With practice this yields the skill to press two 6-key sequences in an almost automatic way. This task is well suited also for fMRI studies (e.g., Jouen, Verwey, et al., 2013).

Given the contemporary techniques to look into the working brain the logical next question is how these processes are based in the various structures of the brain (notably, prefrontal cortex, basal ganglia, cerebellum, supplementary motor area, and motor cortex). In other words, how are the cognitive processes, postulated on basis of behavioral research, based in the massively parallel system of the brain? Therefore, at our department we also carry out brain research using EEG, and in cooperation with external colleagues, brain scanning methods (fMRI), and stimulation of the brain using magnetic fields (TMS).



Together with my colleague, prof. Frank van der Velde, I am now looking into the possibility to model our cognitive model in a neural network architecture that allows our iCub robot to learn movement patterns.

Application of the knowledge we develop with our basic research obviously is of great importance for Cognitive Ergonomics, too. To that end, I also apply the developed scientific knowledge (a) in the design of systems to make them more user-friendly, and (b) in the design of training programs and training simulators of perceptual-motor tasks like car driving, and performing surgical procedures. In practice, training simulators often appear less functional than expected, and their users do not always understand why these simulators do not work better. Our knowledge of the underlying, basic information processes help us improve training programs, determine what we can and what we cannot practice in simulators, and decide when training should stop in the simulator, and continue in the real world.


Figure 2 The iCub robot that we are providing with capabilities to learn movement patterns.


Some references

  • Jouen, A.-L., Verwey, W. B., Van Der Helden, J., Scheiber, C., Neveu, R., Dominey, P. F., and JocelyneVentre-Dominey (2013). Discrete Sequence Production With and Without a Pause: The Role of Cortex, Basal Ganglia and Cerebellum. Frontiers in Human Neuroscience, 7.
  • Verwey, W. B. (2001). Concatenating familiar movement sequences: the versatile cognitive processor. Acta Psychologica, 106(1-2), 69-95.
  • Verwey, W. B. (2010). Diminished motor skill development in elderly: Indications for limited motor chunk use. Acta Psychologica, 134(2), 206-214.
  • Verwey, W. B., Shea, C. H., & Wright, D. L. (2015). A cognitive framework for explaining serial processing and sequence execution strategies. Psychonomic Bulletin & Review, 22(1), 54-77.


Immink, M. A. , Verwey, W. B., & Wright, D. L. (2020). The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages. In C. S. Nam (Ed.), Cognitive Science and Technology (pp. 221-249). (Cognitive Science and Technology). Springer. https://doi.org/10.1007/978-3-030-34784-0_12
Chen, J., McCulloch, A., Kim, H., Kim, T., Rhee, J. , Verwey, W. B., Buchanan, J. J., & Wright, D. L. (2020). Application of anodal tDCS at primary motor cortex immediately after practice of a motor sequence does not improve offline gain. Experimental brain research, 238(1), 29-37. https://doi.org/10.1007/s00221-019-05697-7
Verwey, W. B., Dominey, P., & Ventre-Dominey, J. (2019). Explaining the neural activity distribution associated with discrete movement sequences: Evidence for parallel neural systems. In Neural Control of Movement anual meeting 2019

UT Research Information System

Google Scholar Link


Involved in the following activities:

  • Biopsychology
  • Traffic Psychology
  • Research methods
  • Supervising Bachelor thesis HFE
  • Supervising Master thesis HFE

Affiliated Study Programmes




Contact Details

Visiting Address

University of Twente
Faculty of Behavioural, Management and Social Sciences
Cubicus (building no. 41), room B326
De Zul 10
7522NJ  Enschede
The Netherlands

Navigate to location

Mailing Address

University of Twente
Faculty of Behavioural, Management and Social Sciences
Cubicus  B326
P.O. Box 217
7500 AE Enschede
The Netherlands